ﻻ يوجد ملخص باللغة العربية
A master equation has been constructed for a global system-bath interaction both in the absence as well as presence of non-Markovian noise. For the memoryless case, it has been exactly solved for a paradigmatic class of two qubit states in high and zero temperature thermal environment. For the non-Markovian model, it has been solved for zero temperature bath. The evolution of quantum coherence and entanglement has been observed in presence of the above mentioned interactions. We show that the global part of the system-bath interaction compensates for the decoherence, resulting in slow down of coherence and entanglement decay. For an appropriately defined limiting case, both coherence and entanglement show freezing behaviour for the high temperature bath. In case of zero temperature bath, the mentioned interaction not only stabilizes the non-classical correlations, but also enhances them for a finite period. For the memory dependent case, we have seen that the global interaction enhances the back-flow of information from environment to the system, as it enhances the regeneration of coherence and entanglement. Also we have studied the generation of Quantum Fisher information by the mentioned process. An intuitive measure of non-classicality based on non-commutativity of quantum states has been considered. Bounds on generated quantum Fisher information has been found in terms of quantumness and coherence. This gives us a novel understanding of Quantum Fisher information as a measure of non-classicality.
The origin of non-classicality in physical systems and its connection to distinctly quantum features such as entanglement and coherence is a central question in quantum physics. This work analyses this question theoretically and experimentally, linki
This paper aims to stress the role of the Cahill-Glauber quasi-probability densities in defining, detecting, and quantifying the non-classicality of field states in quantum optics. The distance between a given pure state and the set of all pure class
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lor
Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which
The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be