ﻻ يوجد ملخص باللغة العربية
The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
Detecting dark matter as it streams through detectors on Earth relies on knowledge of its phase space density on a scale comparable to the size of our solar system. Numerical simulations predict that our Galactic halo contains an enormous hierarchy o
Traditional dark matter (DM) models, eg. WIMPs, assume dark matter is weakly coupled to the standard model so that elastic scattering between DM and baryons can be described perturbatively by Born approximation. Most direct detection experiments are
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the curr
The LUX experimental group has just announced the most stringent upper limits so far obtained on the cross section of WIMP-nucleon elastic scattering [1]. This result is a factor of two to five below the previous best upper limit [2] and effectively
The dark matter spike induced by the adiabatic growth of a massive black hole in a cuspy environment, may explain the thermal dark matter density required to fit the cut-off in the HESSJ1745-290 gamma-ray spectra as TeV dark matter signal with a back