ﻻ يوجد ملخص باللغة العربية
We report the detection of CO(J=3-2) line emission in the strongly-lensed submillimeter galaxy (SMG) SMM J0939+8315 at z=2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z=0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of S_cont = 7.4 +/- 1.4 mJy. Using the CO(J=3-2) line intensity of I_(CO(3-2)) = (12.6 +/- 2.0) Jy km s^-1, we derive a lensing- and excitation-corrected CO line luminosity of L(CO(3-2)) = (3.4 +/- 0.7) x 10^10 (10.1/mu_L) K km s^-1 pc^2 for the SMG, where mu_L is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of M_gas = (2.7 +/- 0.6) x 10^10 (10.1/mu_L) Msun. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1^{+1.1}_{-1.3} K, a dust mass of M_dust = (5.2 +/- 2.1) x 10^8 (10.1/mu_L) Msun, and a total infrared luminosity of L_IR = (9.1 +/- 1.2) x 10^12 (10.1/mu_L) Lsun. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a star-bursting phase to an unobscured quasar phase as described by the evolutionary link model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.
We present a new study of archival ALMA observations of the CO(2-1) line emission of the host galaxy of quasar RX J1131 at redshift $z$=0.654, lensed by a foreground galaxy. A simple lens model is shown to well reproduce the optical images obtained b
We report the detection of CO 2-1, 5-4, and 6-5 emission in the highest-redshift submillimeter galaxy (SMG) AzTEC-3 at z=5.298, using the Expanded Very Large Array and the Plateau de Bure Interferometer. These observations ultimately confirm the reds
Observations of the molecular gas phase in quasar host galaxies provide fundamental constraints on galaxy evolution at the highest redshifts. Molecular gas is the material out of which stars form; it can be traced by spectral line emission of carbon-
Most molecular gas studies of $z > 2.5$ galaxies are of intrinsically bright objects, despite the galaxy population being primarily normal galaxies with less extreme star formation rates. Observations of normal galaxies at high redshift provide a mor
We present high-resolution VLA observations of the molecular gas in the host galaxy of the highest redshift quasar currently known, SDSS J1148+5251 (z=6.42). Our VLA data of the CO(3-2) emission have a maximum resolution of 0.17 x 0.13 (~1 kpc), and