ﻻ يوجد ملخص باللغة العربية
A relationship between the water maser detection rate and large nuclear column densities in AGN has often been cited in the literature. Indeed, detailed studies of luminous water masers, typically associated with the nuclear activity, allow us to investigate the innermost regions of AGN, with an impact on the still debated Unified Model for this class of objects.We have recently entertained a search for maser emission in a well-defined sample of Compton-thick AGN aimed at investigating, on firm statistical bases, the aforementioned relationship. While the survey is still ongoing, and is matter of a forthcoming publication, a new luminous water maser has been detected in the lenticular (field) S0 galaxy IRAS15480-0344, whose origin, associated with an accretion disc or a nuclear outflow/jet, needs to be assessed. Multi-epoch single-dish observations and VLBI measurements were performed to investigate the distribution, spatial extension, and variability of the maser emission in order to infer the main characteristics of the water megamaser. The new detection in IRAS15480-0344 is reported: a megamaser with a total single-dish isotropic luminosity of ~200 Lsun and a profile composed of two main features, a broad line with a full width to half maximum (FWHM) linewidth of ~90 km/s and a narrow (FWHM<1 km/s) one. We performed a follow-up to the detection with the Very Long Baseline Array (VLBA) and confidently detected only the narrow component, which is coincident with the nuclear radio continuum emission detected with the Very Large Array at 8.4 GHz. A weak narrow feature has also been detected in the velocity range of the broad feature and is located 15 pc to the north-west with respect to the stronger component. Neither maser spot is associated with the compact radio continuum sources derived from the same VLBA dataset. [Abridged]
Investigations of H$_2$O maser galaxies at X-ray energies reveal that most AGN associated with water masers are characterized by high levels of absorption. With the aim of finding new maser sources for possible interferometric follow-ups, we have sea
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different pha
Aims. Study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser Active Galactic Nuclei observed by NuSTAR. We u
The Galactic Center contains large amounts of molecular and ionized gas as well as a plethora of energetic objects. Water masers are an extinction-insensitive probe for star formation and thus ideal for studies of star formation stages in this highly
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w