ترغب بنشر مسار تعليمي؟ اضغط هنا

Water masers in Compton-thick AGN I. Detailed study of the new water megamaser in IRAS15480-0344

337   0   0.0 ( 0 )
 نشر من قبل Paola Castangia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Castangia




اسأل ChatGPT حول البحث

A relationship between the water maser detection rate and large nuclear column densities in AGN has often been cited in the literature. Indeed, detailed studies of luminous water masers, typically associated with the nuclear activity, allow us to investigate the innermost regions of AGN, with an impact on the still debated Unified Model for this class of objects.We have recently entertained a search for maser emission in a well-defined sample of Compton-thick AGN aimed at investigating, on firm statistical bases, the aforementioned relationship. While the survey is still ongoing, and is matter of a forthcoming publication, a new luminous water maser has been detected in the lenticular (field) S0 galaxy IRAS15480-0344, whose origin, associated with an accretion disc or a nuclear outflow/jet, needs to be assessed. Multi-epoch single-dish observations and VLBI measurements were performed to investigate the distribution, spatial extension, and variability of the maser emission in order to infer the main characteristics of the water megamaser. The new detection in IRAS15480-0344 is reported: a megamaser with a total single-dish isotropic luminosity of ~200 Lsun and a profile composed of two main features, a broad line with a full width to half maximum (FWHM) linewidth of ~90 km/s and a narrow (FWHM<1 km/s) one. We performed a follow-up to the detection with the Very Long Baseline Array (VLBA) and confidently detected only the narrow component, which is coincident with the nuclear radio continuum emission detected with the Very Large Array at 8.4 GHz. A weak narrow feature has also been detected in the velocity range of the broad feature and is located 15 pc to the north-west with respect to the stronger component. Neither maser spot is associated with the compact radio continuum sources derived from the same VLBA dataset. [Abridged]



قيم البحث

اقرأ أيضاً

76 - P. Castangia 2019
Investigations of H$_2$O maser galaxies at X-ray energies reveal that most AGN associated with water masers are characterized by high levels of absorption. With the aim of finding new maser sources for possible interferometric follow-ups, we have sea rched for water maser emission in a well-defined sample of heavily absorbed AGN ($N_{rm H} > 10^{23}$ cm$^{-2}$), including Compton-thick (CT) sources. All the galaxies in the sample were already searched for 22 GHz water maser emission in previous surveys. With the goal of providing a detection or a stringent upper limit on the H$_2$O luminosity, we re-observed some of the non-detected sources with the Green Bank Telescope. A new luminous H$_2$O maser ($L_{rm H2O} sim 200,$L$_odot$) was detected in the mid-IR-bright Seyfert 2 galaxy IRAS 15480-0344 and then followed-up with the Very Long Baseline Array. In order to shed light on the origin of the maser (jet/outflow vs. disc), we recently observed the radio continuum emission in IRAS 15480-0344 with the European VLBI network (EVN) at 1.7 and 5.0 GHz. With the newly discovered megamaser in IRAS 15480-0344 revealing a narrow ($sim$0.6 km s$^{-1}$) and a broad ($sim$90 km s$^{-1}$) component, the maser detection rate of the CT AGN sample is 50% (18/36), which is one of the highest ever found in maser surveys. The EVN maps show two bright sources (labeled SW and NE) in the nuclear region of IRAS 15480-0344, which we interpret as jet knots tracing regions where the radio plasma impacts dense molecular clouds. [abridged]
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different pha ses of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamaser. Our work roughly doubles the number of galaxies searched for emission in both molecules which host at least one confirmed maser. We confirm with high degree of confidence ($> 8 sigma$) the detection of water emission toward IIZw96, firmly establishing it as the second object to co-host both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamaser coexistance may signal a brief phase along the merger sequence. A statistical analysis of the results of our observations provide possible evidence for an exclusion of H$_2$O kilomasers among OH megamaser hosts.
Aims. Study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser Active Galactic Nuclei observed by NuSTAR. We u se a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with available physical quantities from VLBI mapping. Results. Most of the sources analyzed are heavily obscured, showing a column density in excess of $sim 10^{23}$ cm$^{-2}$. In particular, $79%$ are Compton-thick ($N_{rm H} > 1.5 times 10^{24}$ cm$^{-2}$). Using column densities measured by NuSTAR, with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, the torus dimensions can be predicted. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds connecting the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.
The Galactic Center contains large amounts of molecular and ionized gas as well as a plethora of energetic objects. Water masers are an extinction-insensitive probe for star formation and thus ideal for studies of star formation stages in this highly obscured region. With the Australia Telescope Compact Array, we observed 22 GHz water masers in the entire Central Molecular Zone with sub-parsec resolution as part of the large SWAG survey: ``Survey of Water and Ammonia in the Galactic Center. We detect of order 600 22 GHz masers with isotropic luminosities down to ~10^-7 Lo. Masers with luminosities of >~10^-6 Lo are likely associated with young stellar objects. They appear to be close to molecular gas streamers and may be due to star formation events that are triggered at pericenter passages near Sgr A*. Weaker masers are more widely distributed and frequently show double line features, a tell-tale sign for an origin in evolved star envelopes.
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w e selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا