ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic errors in low latency gravitational wave parameter estimation impact electromagnetic follow-up observations

246   0   0.0 ( 0 )
 نشر من قبل Tyson Littenberg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the most eagerly anticipated opportunities made possible by Advanced LIGO/Virgo are multimessenger observations of compact mergers. Optical counterparts may be short-lived so rapid characterization of gravitational wave (GW) events is paramount for discovering electromagnetic signatures. One way to meet the demand for rapid GW parameter estimation is to trade off accuracy for speed, using waveform models with simplified treatment of the compact objects spin. We report on the systematic errors in GW parameter estimation suffered when using different spin approximations to recover generic signals. Component mass measurements can be biased by $>5sigma$ using simple-precession waveforms and in excess of $20sigma$ when non-spinning templates are employed. This suggests that electromagnetic observing campaigns should not take a strict approach to selecting which LIGO/Virgo candidates warrant follow-up observations based on low-latency mass estimates. For sky localization, we find searched areas are up to a factor of ${sim}$2 larger for non-spinning analyses, and are systematically larger for any of the simplified waveforms considered in our analysis. Distance biases for the non-precessing waveforms can be in excess of 100% and are largest when the spin angular momenta are in the orbital plane of the binary. We confirm that spin-aligned waveforms should be used for low-latency parameter estimation at the minimum. Including simple precession, though more computationally costly, mitigates biases except for signals with extreme precession effects. Our results shine a spotlight on the critical need for development of computationally inexpensive precessing waveforms and/or massively parallel algorithms for parameter estimation.



قيم البحث

اقرأ أيضاً

Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole - neutron star candi dates has highlighted the need for a better discrimination criterion to support this effort. At the moment, the low-latency gravitational-wave alerts contain preliminary information about the binary properties and, hence, on whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as well as the probability of a signal being a binary neutron star, a black hole - neutron star, a binary black hole or of terrestrial origin. In this work, we expand upon this approach to predict both the ejecta properties and provide contours of potential lightcurves for these events in order to improve follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters, by the low-latency pipelines, represent the main limitations. To validate the method, we test our approach on real events from the second and third Advanced LIGO-Virgo observing runs.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.
The electromagnetic (EM) emission associated with a gravitational wave (GW) signal is one of the main goal of future astronomy. Merger of neutron stars and/or black holes and core-collapse of massive stars are expected to cause rapid transient electr omagnetic signals. The EM follow-up of GW signals will have to deal with large position uncertainties. The gravitational sky localization is expected to be tens to hundreds of square degrees. Wide-field cameras and rapid follow-up observations will be crucial to characterize the EM candidates for the first EM counterpart identification. We present some of the activities that we are currently carrying on to optimize the response of the INAF network of facilities to expected GW triggers. The INAF network will represent an efficient operational framework capable of fast reaction on large error box triggers and direct identification and characterization of the candidates.
We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~( SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave phase at negative ($-4$) post-Newtonian order, and is therefore dominant for binaries at large separations. If accretion takes place at the Eddington or at super-Eddington rate, it will leave a detectable imprint on the dynamics of SOBHBs. In optimistic astrophysical scenarios, a multiwavelength strategy with LISA and a ground-based interferometer can detect about $10$ (a few) SOBHB events for which the accretion rate can be measured at $50%$ ($10%$) level. In all cases the sky position can be identified within much less than $0.4,{rm deg}^2$ uncertainty. Likewise, accretion at $gtrsim 10%$ ($gtrsim 100%$) of the Eddington rate can be measured in IMBHBs up to redshift $zapprox 0.1$ ($zapprox 0.5$), and the position of these sources can be identified within less than $0.01,{rm deg}^2$ uncertainty. Altogether, a detection of SOBHBs or IMBHBs would allow for targeted searches of electromagnetic counterparts to black-hole mergers in gas-rich environments with future X-ray detectors (such as Athena) and radio observatories (such as SKA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا