ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models: I. Parameter accuracy and benchmark stars

90   0   0.0 ( 0 )
 نشر من قبل Vera Maria Passegger
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M-dwarf stars are the most numerous stars in the Universe; they span a wide range in mass and are in the focus of ongoing and planned exoplanet surveys. To investigate and understand their physical nature, detailed spectral information and accurate stellar models are needed. We use a new synthetic atmosphere model generation and compare model spectra to observations. To test the model accuracy, we compared the models to four benchmark stars with atmospheric parameters for which independent information from interferometric radius measurements is available. We used $chi^2$ -based methods to determine parameters from high-resolution spectroscopic observations. Our synthetic spectra are based on the new PHOENIX grid that uses the ACES description for the equation of state. This is a model generation expected to be especially suitable for the low-temperature atmospheres. We identified suitable spectral tracers of atmospheric parameters and determined the uncertainties in $T_{rm eff}$, $log{g}$, and [Fe/H] resulting from degeneracies between parameters and from shortcomings of the model atmospheres. The inherent uncertainties we find are {sigma}$T_{rm eff}$= 35 K, {sigma}$log{g}$ = 0.14, and {sigma}[Fe/H] = 0.11. The new model spectra achieve a reliable match to our observed data; our results for $T_{rm eff}$ and $log{g}$ are consistent with literature values to within 1{sigma}. However, metallicities reported from earlier photometric and spectroscopic calibrations in some cases disagree with our results by more than 3 {sigma}. A possible explanation are systematic errors in earlier metallicity determinations that were based on insufficient descriptions of the cool atmospheres. At this point, however, we cannot definitely identify the reason for this discrepancy, but our analysis indicates that there is a large uncertainty in the accuracy of M-dwarf parameter estimates.



قيم البحث

اقرأ أيضاً

Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample. We present new f undamental stellar parameters of nine dwarfs that will be used as benchmarks for large stellar surveys. One of these stars is the solar-twin 18Sco, which is one of the Gaia-ESO benchmarks. The goal is to reach a precision of 1% in Teff. This precision is important for accurate determinations of the full set of fundamental parameters and abundances of stars observed by the surveys. We observed HD131156 (xiBoo), HD146233 (18Sco), HD152391, HD173701, HD185395 (thetaCyg), HD186408 (16CygA), HD186427 (16CygB), HD190360 and HD207978 (15Peg) using the high angular resolution optical interferometric instrument PAVO/CHARA. We derived limb-darkening corrections from 3D model atmospheres and determined Teff directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE spectrograph and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analyses of unblended lines of neutral and singly ionized iron. For eight of the nine stars, we measure the Teff less than 1%, and for one star better than 2%. We determined the median uncertainties in logg and Fe/H as 0.015dex and 0.05dex, respectively. This study presents updated fundamental stellar parameters of nine dwarfs that can be used as a new set of benchmarks. All parameters were based on consistently combining interferometric observations, 3D limb-darkening modelling and spectroscopic analysis. The next paper will extend our sample to metal-rich giants.
Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmarks is currently limited. We aim to construct a new set of metal-poor benchmar ks, based on reliable interferometric effective temperature ($T_text{eff}$) determinations and a homogeneous analysis with a desired precision of $1%$ in $T_text{eff}$. We observed ten late-type metal-poor dwarf and giants: HD2665, HD6755, HD6833, HD103095, HD122563, HD127243, HD140283, HD175305, HD221170, and HD224930. Only three of the ten stars (HD103095, HD122563, and HD140283) have previously been used as benchmarks. For the observations, we used the high angular resolution optical interferometric instrument PAVO at the CHARA array. We modelled angular diameters using 3D limb darkening models and determined $T_text{eff}$ directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities ($log(g)$) were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE and FIES spectrographs and estimated metallicities ($mathrm{[Fe/H]}$) from a 1D non-LTE abundance analysis of unblended lines of neutral and singly ionized iron. We inferred $T_text{eff}$ to better than $1%$ for five of the stars (HD103095, HD122563, HD127243, HD140283, and HD224930). The $T_text{eff}$ of the other five stars are reliable to between $2-3%$; the higher uncertainty on the $T_text{eff}$ for those stars is mainly due to their having a larger uncertainty in the bolometric fluxes. We also determined $log(g)$ and $mathrm{[Fe/H]}$ with median uncertainties of $0.03,mathrm{dex}$ and $0.09,mathrm{dex}$, respectively. These ten stars can, therefore, be adopted as a new, reliable set of metal-poor benchmarks.
With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-s table, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters ($T_{rm eff}$, $log{g}$, $xi$, and [Fe/H]) by means of the StePar code, a Python implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe I and Fe II line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17100 angstroms, thus substantially increasing the number of identified Fe I and Fe II lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe I and Fe II lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 $Gaia$ benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe I and Fe II lines when the near-infrared region is taken into account reveals a deeper $T_{rm eff}$ scale that might stem from a higher sensitivity of the near-infrared lines to $T_{rm eff}$.
The scientific communitys interest on the stellar parameters of M dwarfs has been increasing over the last few years, with potential applications ranging from galactic characterization to exoplanet detection. The main motivation for this work is to d evelop an alternative and objective method to derive stellar parameters for M dwarfs using the H-band spectra provided by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Synthetic spectra generated with textit{iSpec}, textit{Turbospectrum}, textit{MARCS} models atmospheres and a custom made line list including over 1 000 000 water lines, are compared to APOGEE observations, and parameters are determined through $chi^2$ minimization. Spectroscopic parameters ($T_mathrm{eff}$, $[M/H]$, $log g$, $v_{mic}$) are presented for a sample of 313 M dwarfs, obtained from their APOGEE H-band spectra. The generated synthetic spectra reproduce observed spectra to a high accuracy level. The impact of the spectra normalization on the results are analyzed as well. Our output parameters are compared with the ones obtained with APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) for the same stellar spectrum, and we find that the values agree within the expected uncertainties. Comparisons with other previous near-infrared and optical literature are also available, with median differences within our estimated uncertainties found in most cases. Possible reasons for these differences are explored. The full H-band line list, the line selection for the synthesis, and the synthesized spectra are available for download, as are the calculated stellar parameters.
Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understa nding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ < -3$, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe]$> +0.7$) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turn-off stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا