ﻻ يوجد ملخص باللغة العربية
To obtain comprehensive performance, heavy elements were added into superalloys for solid solution hardening. In this article, it is found by scanning transmission electron microscope observation that rather than distribute randomly heavy-atom columns prefer to align along <100> and <110> direction and form a short-range ordering with the heavy-element stripes 1-2 nm in length. Due to the strong bonding strength between the refractory elements and Ni atoms, this short-range ordering will be beneficial to the mechanical performances.
Numerical simulations are used in this work to investigate aspects of microstructure and microsegregation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite ele
The Raman spectra of single crystals of NiFe2O4 were studied in various scattering configurations in close comparison with the corresponding spectra of Ni0.7Zn0.3Fe2O4 and Fe3O4. The number of experimentally observed Raman modes exceeds significantly
Group IV alloys have been long viewed as homogeneous random solid solutions since they were first perceived as Si-compatible, direct-band-gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation and prediction of
La2Au2Cd and Ce2Au2Cd were prepared from the elements by reactions in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. These intermetallics crystallize with the tetragonal Mo2FeB2 type, space group P4/mbm. While La2Au2C
We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na$_2$IrO$_3$, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir