ﻻ يوجد ملخص باللغة العربية
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine-Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine-Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, where is concluded that the dilaton parameter regulates these corrections.
We discuss the nature of criticality in the $beta^2 = 2 pi N$ self-dual extention of the sine-Gordon model. This field theory is related to the two-dimensional classical XY model with a N-fold degenerate symmetry-breaking field. We briefly overview t
Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.
Two series of integrable theories are constructed which have soliton solutions and can be thought of as generalizations of the sine-Gordon theory. They exhibit internal symmetries and can be described as gauged WZW theories with a potential term. The spectrum of massive states is determined.
The semi-classical spectrum of the Homogeneous sine-Gordon theories associated with an arbitrary compact simple Lie group G is obtained and shown to be entirely given by solitons. These theories describe quantum integrable massive perturbations of Ge
We study one-point functions of the sine-Gordon model on a cylinder. Our approach is based on a fermionic description of the space of descendent fields, developed in our previous works for conformal field theory and the sine-Gordon model on the plane