ﻻ يوجد ملخص باللغة العربية
We have investigated thermodynamic and dynamic properties as well as the dielectric constant of water-metha-nol model mixtures in the entire range of composition by using constant pressure molecular dynamics simulations at ambient conditions. The SPC/E and TIP4P/Ew water models are used in combination with the OPLS united atom modelling for methanol. Changes of the average number of hydrogen bonds between particles of different species and of the fractions of differently bonded molecules are put in correspondence with the behavior of excess mixing volume and enthalpy, of self-diffusion coefficients and rotational relaxation times. From the detailed analyses of the results obtained in this work, we conclude that an improvement of the description of an ample set of properties of water-methanol mixtures can possibly be reached, if a more sophisticated, carefully parameterized, e.g., all atom, model for methanol is used. Moreover, exploration of parametrization of the methanol force field, with simultaneous application of different combination rules for methanol-water cross interactions, is required.
Isothermal-isobaric molecular dynamics simulations have been performed to examine an ample set of properties of the model water-N,N-dimethylformamide (DMF) mixture as a function of composition. The SPC-E and TIP4P-Ew water models together with two un
Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and other properties of a model solution consisting of NaCl salt dissolved in water-methanol mixture. The SPC/E water model and the united atom model for
We explore the effects of composition and temperature on the apparent molar volumes of species of water-methanol mixtures. Isothermal-isobaric molecular dynamics simulations are used with this purpose. Several combinations of models for water and for
Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and some properties of water-methanol liquid mixture. The TIP4P/2005 and SPC/E water models are combined with the united atom TraPPE and the all-atom for
The properties of model solutions consisting of a solute --- single curcumin molecule in water, methanol and dimethyl sulfoxide solvents have been studied using molecular dynamics (MD) computer simulations in the isobaric-isothermal ensemble. The uni