ﻻ يوجد ملخص باللغة العربية
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
Recently, a practical approach to holographic renormalization has been developed based on the Hamilton-Jacobi formulation. Using a simple Einstein-scalar theory, we clarify that this approach does not conflict with the Hamiltonian constraint as it se
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitat
We define bulk/boundary maps corresponding to quantum gravity states in the tensorial group field theory formalism, for quantum geometric models sharing the same type of quantum states of loop quantum gravity. The maps are defined in terms of a parti
A ghost free massive deformation of unimodular gravity (UG), in the spirit of {em mimetic massive gravity}, is shown to exist. This construction avoids the no-go theorem for a Fierz-Pauli type of mass term in UG by giving up on Lorentz invariance. In
In this paper, we investigate the AC charge transport in the holographic Horndeski gravity and identify a metal-semiconductor like transition that is driven by the Horndeski coupling. Moreover, we fit our numeric data by the Drude formula in slow relaxation cases.