ﻻ يوجد ملخص باللغة العربية
The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, and the attainable quantum advantage is modest. Here we solve an oracle-based problem, known as learning parity with noise, using a five-qubit superconducting processor. Running classical and quantum algorithms on the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a quantum advantage already emerges in existing noisy systems
We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter $x$ and involve execution of a (possibly unknown) quantum process $mathcal{E}$
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Since quantum systems produce counter-intuitive patterns believed not to be efficiently produced by cl
We show that postselection offers a nonclassical advantage in metrology. In every parameter-estimation experiment, the final measurement or the postprocessing incurs some cost. Postselection can improve the rate of Fisher information (the average inf
Random access codes have provided many examples of quantum advantage in communication, but concern only one kind of information retrieval task. We introduce a related task - the Torpedo Game - and show that it admits greater quantum advantage than th
The use of quantum computing for machine learning is among the most exciting prospective applications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational ta