ﻻ يوجد ملخص باللغة العربية
We derive a framework for quantifying entanglement in multipartite and high dimensional systems using only correlations in two unbiased bases. We furthermore develop such bounds in cases where the second basis is not characterized beyond being unbiased, thus enabling entanglement quantification with minimal assumptions. Furthermore, we show that it is feasible to experimentally implement our method with readily available equipment and even conservative estimates of physical parameters.
In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement; in particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communicati
Mutually unbiased bases (MUBs) provide a standard tool in the verification of quantum states, especially when harnessing a complete set for optimal quantum state tomography. In this work, we investigate the detection of entanglement via inequivalent
Two equivalent ways of looking for mutually unbiased bases are discussed in this note. The passage from the search for d+1 mutually unbiased bases in C(d) to the search for d(d+1) vectors in C(d*d) satisfying constraint relations is clarified. Symmet
When used in quantum state estimation, projections onto mutually unbiased bases have the ability to maximize information extraction per measurement and to minimize redundancy. We present the first experimental demonstration of quantum state tomograph
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.