ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Metallicity and Origin of the Smith High-Velocity Cloud

158   0   0.0 ( 0 )
 نشر من قبل Andrew J. Fox
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Smith Cloud is a gaseous high-velocity cloud (HVC) in an advanced state of accretion, only 2.9 kpc below the Galactic plane and due to impact the disk in 27 Myr. It is unique among HVCs in having a known distance (12.4+/-1.3 kpc) and a well-constrained 3D velocity (296 km/s), but its origin has long remained a mystery. Here we present the first absorption-line measurements of its metallicity, using HST/COS UV spectra of three AGN lying behind the Cloud together with Green Bank Telescope 21 cm spectra of the same directions. Using Voigt-profile fitting of the S II 1250, 1253, 1259 triplet together with ionization corrections derived from photoionization modeling, we derive the sulfur abundance in each direction; a weighted average of the three measurements gives [S/H]=-0.28+/-0.14, or 0.53+0.21-0.15 solar metallicity. The finding that the Smith Cloud is metal-enriched lends support to scenarios where it represents recycled Galactic material rather than the remnant of a dwarf galaxy or accreting intergalactic gas. The metallicity and trajectory of the Cloud are both indicative of an origin in the outer disk. However, its large mass and prograde kinematics remain to be fully explained. If the cloud has accreted cooling gas from the corona during its fountain trajectory, as predicted in recent theoretical work, its current mass would be higher than its launch mass, alleviating the mass concern.



قيم البحث

اقرأ أيضاً

Measurements of high-velocity clouds metallicities provide important clues about their origins, and hence on whether they play a role in fueling ongoing star formation in the Galaxy. However, accurate interpretation of these measurements requires com pensating for the galactic material that has been mixed into the clouds. In order to determine how much the metallicity changes as a result of this mixing, we have carried out three-dimensional wind-tunnel-like hydrodynamical simulations of an example cloud. Our model cloud is patterned after the Smith Cloud, a particularly well-studied cloud of mass $sim 5 times 10^6~M_odot$. We calculated the fraction of the high-velocity material that had originated in the galactic halo, $F_mathrm{h}$, for various sight lines passing through our model cloud. We find that $F_mathrm{h}$ generally increases with distance from the head of the cloud, reaching $sim$0.5 in the tail of the cloud. Models in which the metallicities (relative to solar) of the original cloud, $Z_mathrm{cl}$, and of the halo, $Z_mathrm{h}$, are in the approximate ranges $0.1 lesssim Z_mathrm{cl} lesssim 0.3$ and $0.7 lesssim Z_mathrm{h} lesssim 1.0$, respectively, are in rough agreement with the observations. Models with $Z_mathrm{h} sim 0.1$ and $Z_mathrm{cl} gtrsim 0.5$ are also in rough agreement with the observations, but such a low halo metallicity is inconsistent with recent independent measurements. We conclude that the Smith Clouds observed metallicity may not be a true reflection of its original metallicity and that the clouds ultimate origin remains uncertain.
The recent discovery of an enriched metallicity for the Smith high-velocity HI cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our mod el, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the clouds cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology we explore two scenarios: a) the outflow is inclined with respect to the vertical direction; b) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40 deg while the latter requires >1000 km/s winds. All scenarios predict that the SC is in the ascending phase of its trajectory and have large - but not implausible - energy requirements.
We investigate the future evolution of the Smith Cloud by performing hydrodynamical simulations of the cloud impact onto the gaseous Milky Way Galactic disk. We assume a local origin for the cloud and thus do not include a dark matter component to st abilize it. Our main focus is the clouds influence on the local and global star formation rate (SFR) of the Galaxy and whether or not it leads to an observable event in the far future. Our model assumes two extremes for the mass of the Smith Cloud, an upper mass limit of 10$^7$ M$_{odot}$ and a lower mass limit of 10$^6$ M$_{odot}$, compared to the observational value of a few 10$^6$ M$_{odot}$. In addition, we also make the conservative assumption that the entirety of the cloud mass of the extended Smith Cloud is concentrated within the tip of the cloud. We find that the impact of the low-mass cloud produces no noticeable change in neither the global SFR nor the local SFR at the cloud impact site within the galactic disk. For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the global SFR of up to 1 M$_{odot}$ yr$^{-1}$, which nearly doubles the normal Milky Way SFR. This highly localized starburst should be observable.
The Magellanic Stream (MS) is a well-resolved gaseous tail originating from the Magellanic Clouds. Studies of its physical properties and chemical composition are needed to understand its role in Galactic evolution. We investigate the properties of a compact HVC (CHVC 224.0-83.4-197) lying close on the sky to the MS to determine whether it is physically connected to the Stream and to examine its internal structure. Our study is based on analysis of HST/COS spectra of three QSOs (Ton S210, B0120-28, and B0117-2837) all of which pass through this single cloud at small angular separation (lessim 0.72{deg}), allowing us to compare physical conditions on small spatial scales. No significant variation is detected in the ionization structure from one part of the cloud to the other. Using Cloudy photoionization models, toward Ton S210 we derive elemental abundances of [C/H] = -1.21 +/- 0.11, [Si/H] = -1.16 +/- 0.11, [Al/H] = -1.19 +/- 0.17 and [O/H] = -1.12 +/- 0.22, which agree within 0.09 dex. The CHVC abundances match the 0.1 solar abundances measured along the main body of the Stream. This suggests that the CHVC (and by extension the extended network of filaments to which it belongs) has an origin in the MS. It may represent a fragment that has been removed from the Stream as it interacts with the gaseous Galactic halo.
A soft X-ray enhancement has recently been reported toward the high-velocity cloud MS30.7-81.4-118 (MS30.7), a constituent of the Magellanic Stream. In order to investigate the origin of this enhancement, we have analyzed two overlapping XMM-Newton o bservations of this cloud. We find that the X-ray enhancement is $sim$6 or $sim$100 pc across, and is concentrated to the north and west of the densest part of the cloud. We modeled the X-ray enhancement with a variety of spectral models. A single-temperature equilibrium plasma model yields a temperature of $(3.69^{+0.47}_{-0.44}) times 10^6$ K and a 0.4-2.0 keV luminosity of $7.9 times 10^{33}$ erg s$^{-1}$. However, this model underpredicts the on-enhancement emission around 1 keV, which may indicate the additional presence of hotter plasma ($T gtrsim 10^7$ K), or that recombination emission is important. We examined several different physical models for the origin of the X-ray enhancement. We find that turbulent mixing of cold cloud material with hot ambient material, compression or shock heating of a hot ambient medium, and charge exchange reactions between cloud atoms and ions in a hot ambient medium all lead to emission that is too faint. In addition, shock heating in a cool or warm medium leads to emission that is too soft (for reasonable cloud speeds). We find that magnetic reconnection could plausibly power the observed X-ray emission, but resistive magnetohydrodynamical simulations are needed to test this hypothesis. If magnetic reconnection is responsible for the X-ray enhancement, the observed spectral properties could potentially constrain the magnetic field in the vicinity of the Magellanic Stream.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا