ﻻ يوجد ملخص باللغة العربية
We present details of our implementation of the Wuppertal adaptive algebraic multigrid code DD-$alpha$AMG on SIMD architectures, with particular emphasis on the Intel Xeon Phi processor (KNC) used in QPACE 2. As a smoother, the algorithm uses a domain-decomposition-based solver code previously developed for the KNC in Regensburg. We optimized the remaining parts of the multigrid code and conclude that it is a very good target for SIMD architectures. Some of the remaining bottlenecks can be eliminated by vectorizing over multiple test vectors in the setup, which is discussed in the contribution of Daniel Richtmann.
In this paper, we present an efficient adaptive multigrid strategy for large-scale molecular mechanics optimization. The oneway multigrid method is used with inexact approximations, such as the quasi-atomistic (QA) approximation or the blended ghost
Convolution layers are prevalent in many classes of deep neural networks, including Convolutional Neural Networks (CNNs) which provide state-of-the-art results for tasks like image recognition, neural machine translation and speech recognition. The c
Efficient numerical solvers for sparse linear systems are crucial in science and engineering. One of the fastest methods for solving large-scale sparse linear systems is algebraic multigrid (AMG). The main challenge in the construction of AMG algorit
In recent contributions, algebraic multigrid methods have been designed and studied from the viewpoint of the spectral complementarity. In this note we focus our efforts on specific applications and, more precisely, on large linear systems arising fr
For embedded boundary electromagnetics using the Dey-Mittra algorithm, a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwells curl-curl matrix. Efficient curl-curl