ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional spectral analysis of compositional heterogeneity at Arruntia crater on (4) Vesta using Dawn FC

108   0   0.0 ( 0 )
 نشر من قبل Guneshwar Thangjam Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an innovative three-dimensional spectral approach (three band parameter space with polyhedrons) that can be used for both qualitative and quantitative analyses improving the characterization of surface heterogeneity of (4) Vesta. It is an advanced and more robust methodology compared to the standard two-dimensional spectral approach (two band parameter space). The Dawn Framing Camera (FC) color data obtained during High Altitude Mapping Orbit (resolution ~ 60 m/pixel) is used. The main focus is on the howardite-eucrite-diogenite (HED) lithologies containing carbonaceous chondritic material, olivine, and impact-melt. The archived spectra of HEDs and their mixtures, from RELAB, HOSERLab and USGS databases as well as our laboratory-measured spectra are used for this study. Three-dimensional convex polyhedrons are defined using computed band parameter values of laboratory spectra. Polyhedrons based on the parameters of Band Tilt (R0.92{mu}m/R0.96{mu}m), Mid Ratio ((R0.75{mu}m/R0.83{mu}m)/(R0.83{mu}m/R0.92{mu}m)) and reflectance at 0.55 {mu}m (R0.55{mu}m) are chosen for the present analysis. An algorithm in IDL programming language is employed to assign FC data points to the respective polyhedrons. The Arruntia region in the northern hemisphere of Vesta is selected for a case study because of its geological and mineralogical importance. We observe that this region is eucrite-dominated howarditic in composition. The extent of olivine-rich exposures within an area of 2.5 crater radii is ~ 12% larger than the previous finding (Thangjam et al., 2014). Lithologies of nearly pure CM2-chondrite, olivine, glass, and diogenite are not found in this region. Our spectral approach can be extended to the entire Vestan surface to study the heterogeneous surface composition and its geology.



قيم البحث

اقرأ أيضاً

136 - S. Marchi 2013
The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with predictions derived from current collisional and dynamical models down to a projectile size of ~10 m diameter (Bottke et al., 2005a,b). The shape of the impactor SFD for small projectile sizes does not appear to have changed over the last several billions of years, and an argument can be made that the absolute number of small MBAs has remained roughly constant (within a factor of 2) over the same time period. The apparent steady state nature of the main belt population potentially provides us with a set of intriguing constraints that can be used to glean insights into the physical evolution of individual MBAs as well as the main belt as an ensemble.
Dawn is the first NASA mission to operate in the vicinity of the two most massive asteroids in the main belt, Ceres and Vesta. This double-rendezvous mission is enabled by the use of low-thrust solar electric propulsion. Dawn will arrive at Vesta in 2011 and will operate in its vicinity for approximately one year. Vestas mass and non-spherical shape, coupled with its rotational period, presents very interesting challenges to a spacecraft that depends principally upon low-thrust propulsion for trajectory-changing maneuvers. The details of Vestas high-order gravitational terms will not be determined until after Dawns arrival at Vesta, but it is clear that their effect on Dawn operations creates the most complex operational environment for a NASA mission to date. Gravitational perturbations give rise to oscillations in Dawns orbital radius, and it is found that trapping of the spacecraft is possible near the 1:1 resonance between Dawns orbital period and Vestas rotational period, located approximately between 520 and 580 km orbital radius.This resonant trapping can be escaped by thrusting at the appropriate orbital phase. Having passed through the 1:1 resonance, gravitational perturbations ultimately limit the minimum radius for low-altitude operations to about 400 km,in order to safely prevent surface impact. The lowest practical orbit is desirable in order to maximize signal-to-noise and spatial resolution of the Gamma-Ray and Neutron Detector and to provide the highest spatial resolution observations by Dawns Framing Camera and Visible InfraRed mapping spectrometer. Dawn dynamical behavior is modeled in the context of a wide range of Vesta gravity models. Many of these models are distinguishable during Dawns High Altitude Mapping Orbit and the remainder are resolved during Dawns Low Altitude Mapping Orbit, providing insight into Vestas interior structure.
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial pla nets. The distribution of lithologic and compositional units on the surface of Vesta provides important constraints on its petrologic evolution, impact history and its relationship with Vestoids and howardite-eucrite-diogenite (HED) meteorites. Using color parameters (band tilt and band curvature) originally developed for analyzing lunar data, we have identified and mapped HED terrains on Vesta in Dawn Framing Camera (FC) color data. The average color spectrum of Vesta is identical to that of howardite regions, suggesting an extensive mixing of surface regolith due to impact gardening over the course of solar system history. Our results confirm the hemispherical dichotomy (east-west and north-south) in albedo/color/composition that has been observed by earlier studies. The presence of diogenite-rich material in the southern hemisphere suggests that it was excavated during the formation of the Rheasilvia and Veneneia basins. Our lithologic mapping of HED regions provides direct evidence for magmatic evolution of Vesta with diogenite units in Rheasilvia forming the lower crust of a differentiated object.
We analyze thermal emission spectra using the 2001 Mars Odyssey Thermal Emission Imaging System (THEMIS) and the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) to characterize grain size and mineralogical composition of dunes at Hargr aves crater, Mars. Thermal inertia and bulk composition of the dunes were compared to inferred provenances from the thermal infrared response of surface constituent materials. We use a Markov Chain Monte Carlo (MCMC) technique to estimate the bulk amount of mineralogy contributed by each inferred provenance to the dune field composition. An average thermal inertia value of 238+/-17 Jm-2K-1s-0.5 was found for the dunes corresponding to a surface composed of an average effective grain size of ~391+/-172 um. This effective particle size suggests the presence of mostly medium sand-sized materials mixed with fine and coarse grain sands. The dunes are likely comprised of a weakly indurated surface mixed with unconsolidated materials. Compositional analysis specifies that the dunes are comprised of a mixture of feldspar, olivine, pyroxene, and relatively low bulk-silica content. Dune materials were likely derived from physical weathering, especially eolian erosion, predominantly from the crater ejecta unit at the crater, mixed with a small amount from the crater floor and crater rim and wall lithologies - indicating the dune materials were likely sourced locally.
We present near-infrared (0.78-2.45 {mu}m) reflectance spectra for nine middle and outer main belt (a > 2.5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent sp ectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R- type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system. The 1- and 2-{mu}m band centers of all objects, determined using the Modified Gaussian Model (MGM), were compared to those of 47 Vestoids and fifteen HED meteorites of known composition. The HEDs enabled us to determine formulas relating Band 1 and Band 2 centers to pyroxene ferrosilite (Fs) compositions. Using these formulas we present the most comprehensive compositional analysis to date of middle and outer belt basaltic asteroids. We also conduct a careful error analysis of the MGM-derived band centers for implementation in future analyses. The six outer belt V- and R-type asteroids show more dispersion in parameter space than the Vestoids, reflecting greater compositional diversity than Vesta and its associated bodies. The objects analyzed have Fs numbers which are, on average, between five and ten molar percent lower than those of the Vestoids; however, identification and compositional analysis of additional outer belt basaltic asteroids would help to confirm or refute this result. Given the gradient in oxidation state which existed within the solar nebula, these results tentatively suggest that these objects formed at either a different time or location than 4 Vesta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا