ﻻ يوجد ملخص باللغة العربية
In this paper, we attempt to improve Statistical Machine Translation (SMT) systems on a very diverse set of language pairs (in both directions): Czech - English, Vietnamese - English, French - English and German - English. To accomplish this, we performed translation model training, created adaptations of training settings for each language pair, and obtained comparable corpora for our SMT systems. Innovative tools and data adaptation techniques were employed. The TED parallel text corpora for the IWSLT 2015 evaluation campaign were used to train language models, and to develop, tune, and test the system. In addition, we prepared Wikipedia-based comparable corpora for use with our SMT system. This data was specified as permissible for the IWSLT 2015 evaluation. We explored the use of domain adaptation techniques, symmetrized word alignment models, the unsupervised transliteration models and the KenLM language modeling tool. To evaluate the effects of different preparations on translation results, we conducted experiments and used the BLEU, NIST and TER metrics. Our results indicate that our approach produced a positive impact on SMT quality.
Parallel texts are a relatively rare language resource, however, they constitute a very useful research material with a wide range of applications. This study presents and analyses new methodologies we developed for obtaining such data from previousl
The multilingual nature of the world makes translation a crucial requirement today. Parallel dictionaries constructed by humans are a widely-available resource, but they are limited and do not provide enough coverage for good quality translation purp
This paper describes our work in participation of the IWSLT-2021 offline speech translation task. Our system was built in a cascade form, including a speaker diarization module, an Automatic Speech Recognition (ASR) module and a Machine Translation (
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a
The paper describes BUTs English to German offline speech translation(ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition-Machine Translation models. Their performances is evaluated on MustC-Common test