Topological semimetals with Riemann surface states


الملخص بالإنكليزية

Riemann surfaces are geometric constructions in complex analysis that may represent multi-valued holomorphic functions using multiple sheets of the complex plane. We show that the energy dispersion of surface states in topological semimetals can be represented by Riemann surfaces generated by holomorphic functions in the two-dimensional momentum space, whose constant height contours correspond to Fermi arcs. This correspondence is demonstrated in the recently discovered Weyl semimetals and leads us to predict new types of topological semimetals, whose surface states are represented by double- and quad-helicoid Riemann surfaces. The intersection of multiple helicoids, or the branch cut of the generating function, appears on high-symmetry lines in the surface Brillouin zone, where surface states are guaranteed to be doubly degenerate by a glide reflection symmetry. We predict the heterostructure superlattice [(SrIrO$_3$)$_2$(CaIrO$_3$)$_2$] to be a topological semimetal with double-helicoid Riemann surface states.

تحميل البحث