ترغب بنشر مسار تعليمي؟ اضغط هنا

An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

114   0   0.0 ( 0 )
 نشر من قبل Junfeng Zhen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26 +- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26 + fragments and ultimately theformation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs.



قيم البحث

اقرأ أيضاً

67 - Gabi Wenzel 2020
As a part of interstellar dust, polycyclic aromatic hydrocarbons (PAHs) are processed by the interaction with vacuum ultraviolet (VUV) photons that are emitted by hot young stars. This interaction leads to the emission of the well-known aromatic infr ared bands but also of electrons, which can significantly contribute to the heating of the interstellar gas.Our aim is to investigate the impact of molecular size on the photoionization properties of cationic PAHs.Methods. Trapped PAH cations of sizes between 30 and 48 carbon atoms were submitted to VUV photons in the range of 9 to 20 eV from the DESIRS beamline at the synchrotron SOLEIL. All resulting photoproducts including dications and fragment cations were mass-analyzed and recorded as a function of photon energy.Photoionization is found to be predominant over dissociation at all energies, which differs from an earlier study on smaller PAHs. The photoionization branching ratio reaches 0.98 at 20 eV for the largest studied PAH. The photoionization threshold is observed to be between 9.1 and 10.2 eV, in agreement with the evolution of the ionization potential with size. Ionization cross sections were indirectly obtained and photoionization yields extracted from their ratio with theoretical photoabsorption cross sections, which were calculated using time-dependent density functional theory. An analytical function was derived to calculate this yield for a given molecular size.Large PAH cations could be efficiently ionized in H i regions and provide a contribution to the heating of the gas by photoelectric effect. Also, at the border of or in H ii regions, PAHs could be exposed to photons of energy higher than 13.6 eV. Our work provides recipes to be used in astronomical models to quantify these points.
We present a structural data set of the 20 proteinogenic amino acids and their amino-methylated and acetylated (capped) dipeptides. Different protonation states of the backbone (uncharged and zwitterionic) were considered for the amino acids as well as varied side chain protonation states. Furthermore, we studied amino acids and dipeptides in complex with divalent cations (Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+). The database covers the conformational hierarchies of 280 systems in a wide relative energy range of up to 4 eV (390 kJ/mol), summing up to an overall of 45,892 stationary points on the respective potential-energy surfaces. All systems were calculated on equal first-principles footing, applying density-functional theory in the generalized gradient approximation corrected for long-range van der Waals interactions. We show good agreement to available experimental data for gas-phase ion affinities. Our curated data can be utilized, for example, for a wide comparison across chemical space of the building blocks of life, for the parametrization of protein force fields, and for the calculation of reference spectra for biophysical applications.
153 - Zhihao Lan , Carlos Lobo 2015
We study excitonic states of an atomic impurity in a Fermi gas, i.e., bound states consisting of the impurity and a hole. Previous studies considered bound states of the impurity with particles from the Fermi sea where the holes only formed part of t he particle-hole dressing. Within a two-channel model, we find that, for a wide range of parameters, excitonic states are not ground but metastable states. We further calculate the decay rates of the excitonic states to polaronic and dimeronic states and find they are long lived, scaling as $Gamma^{rm{Exc}}_ {rm{Pol}} propto ( Deltaomega)^{5.5}$ and $Gamma^{rm{Exc}}_ {rm{Dim}} propto (Deltaomega)^{4}$. We also find that a new continuum of exciton-particle states should be considered alongside the previously known dimeron-hole continuum in spectroscopic measurements. Excitons must therefore be considered as a new ingredient in the study of metastable physics currently being explored experimentally.
216 - Kasra Amini , Jens Biegert 2020
Knowledge of molecular structure is paramount in understanding, and ultimately influencing, chemical reactivity. For nearly a century, diffractive imaging has been used to identify the structures of many biologically-relevant gas-phase molecules with atomic (i.e. Angstrom, A; 1 A = 10$^{-10}$ m) spatial resolution. Unravelling the mechanisms of chemical reactions requires the capability to record multiple well-resolved snapshots of the molecular structure as it is evolving on the nuclear (i.e. femtosecond, fs; 1 fs = 10$^{-15}$ s) timescale. We present the latest, state-of-the-art ultrafast electron diffraction methods used to retrieve the molecular structure of gas-phase molecules with Angstrom and femtosecond spatio-temporal resolution. We first provide a historical and theoretical background to elastic electron scattering in its application to structural retrieval, followed by details of field-free and field-dressed ultrafast electron diffraction techniques. We discuss the application of these ultrafast methods to time-resolving chemical reactions in real-time, before providing a future outlook of the field and the challenges that exist today and in the future.
We report on a form of gas-phase anion action spectroscopy based on infrared multiple photon electron detachment and subsequent capture of the free electrons by a neutral electron scavenger in a Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. This method allows one to obtain background-free spectra of strongly bound anions, for which no dissociation channels are observed. The first gas-phase spectra of acetate and propionate are presented using SF6 as electron scavenger and a free electron laser as source of intense and tunable infrared radiation. To validate the method, we compare infrared spectra obtained through multiple photon electron detachment/attachment and multiple photon dissociation for the benzoate anion. In addition, different electron acceptors are used, comparing both associative and dissociative electron capture. The relative energies of dissociation (by CO2 loss) and electron detachment are investigated for all three anions by DFT and CCSD(T) methods. DFT calculations are also employed to predict vibrational frequencies, which provide a good fit to the infrared spectra observed. The frequencies of the symmetric and antisymmetric carboxylate stretching modes for the aliphatic carboxylates are compared to those previously observed in condensed-phase IR spectra and to those reported for gas-phase benzoate, showing a strong influence of the solution environment and a slight substituent effect on the antisymmetric stretch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا