ﻻ يوجد ملخص باللغة العربية
A new method to measure nonlinear dependence between two variables is described using mutual information to analyze the separate linear and nonlinear components of dependence. This technique, which gives an exact value for the proportion of linear dependence, is then compared with another common test for linearity, the Brock, Dechert and Scheinkman (BDS) test.
To provide an efficient approach to characterize the input-output mutual information (MI) under additive white Gaussian noise (AWGN) channel, this short report fits the curves of exact MI under multilevel quadrature amplitude modulation (M-QAM) signa
Estimators for mutual information are typically biased. However, in the case of the Kozachenko-Leonenko estimator for metric spaces, a type of nearest neighbour estimator, it is possible to calculate the bias explicitly.
The mutual information between two jointly distributed random variables $X$ and $Y$ is a functional of the joint distribution $P_{XY},$ which is sometimes difficult to handle or estimate. A coarser description of the statistical behavior of $(X,Y)$ i
Given two random variables $X$ and $Y$, an operational approach is undertaken to quantify the ``leakage of information from $X$ to $Y$. The resulting measure $mathcal{L}(X !! to !! Y)$ is called emph{maximal leakage}, and is defined as the multiplica
A new expression as a certain asymptotic limit via discrete micro-states of permutations is provided to the mutual information of both continuous and discrete random variables.