ﻻ يوجد ملخص باللغة العربية
Currently, 19 transiting exoplanets have published transmission spectra obtained with the Hubble/WFC3 G141 near-IR grism. Using this sample, we have undertaken a uniform analysis incorporating measurement-error debiasing of the spectral modulation due to H$_{2}$O, measured in terms of the estimated atmospheric scale height, ${H_s}$. For those planets with a reported H$_{2}$O detection (10 out of 19), the spectral modulation due to H$_{2}$O ranges from 0.9 to 2.9~${H_s}$ with a mean value of 1.8~$pm$~0.5~${H_s}$. This spectral modulation is significantly less than predicted for clear atmospheres. For the group of planets in which H$_{2}$O has been detected, we find the individual spectra can be coherently averaged to produce a characteristic spectrum in which the shape, together with the spectral modulation of the sample, are consistent with a range of H$_{2}$O mixing ratios and cloud-top pressures, with a minimum H$_{2}$O mixing ratio of 17~$^{+12}_{-6}$~ppm corresponding to the cloud-free case. Using this lower limit, we show that clouds or aerosols must block at least half of the atmospheric column that would otherwise be sampled by transmission spectroscopy in the case of a cloud-free atmosphere. We conclude that terminator-region clouds, with sufficient opacity to be opaque in slant-viewing geometry, are common in hot Jupiters.
We report here the analysis of the near-infrared transit spectrum of the hot-Jupiter HAT-P-32b which was recorded with the Wide Field Camera 3 (WFC3) on-board the Hubble Space Telescope (HST). HAT-P-32b is one of the most inflated exoplanets discover
Orbiting a M dwarf 12 pc away, the transiting exoplanet GJ 1132b is a prime target for transmission spectroscopy. With a mass of 1.7 Earth masses and radius of 1.1 Earth radii, GJ 1132bs bulk density indicates that this planet is rocky. Yet with an e
HD106906b is an ~11$M_{mathrm{Jup}}$, ~15Myr old directly-imaged exoplanet orbiting at an extremely large distance from its host star. The wide separation (7.11 arcsec) between HD106906b and its host star greatly reduces the difficulty in direct-imag
On 5-6 June 2012, Venus will be transiting the Sun for the last time before 2117. This event is an unique opportunity to assess the feasibility of the atmospheric characterisation of Earth-size exoplanets near the habitable zone with the transmission
The hot Jupiter WASP-79b is a prime target for exoplanet atmospheric characterization both now and in the future. Here we present a thermal emission spectrum of WASP-79b, obtained via Hubble Space Telescope Wide Field Camera 3 G141 observations as pa