ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and synthesis of aromatic molecules for probing electric-fields at the nanoscale

166   0   0.0 ( 0 )
 نشر من قبل Sanli Faez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose using halogenated organic dyes as nanoprobes for electric field and show their greatly enhanced Stark coefficients using density functional theory (DFT) calculations. We analyse halogenated variants of three molecules that have been of interest for cryogenic single molecule spectroscopy, perylene, terrylene, and dibenzoterrylene, with the zero-phonon optical transitions at blue, red, and near infrared. Out of all the combinations of halides and binding sites that are calculated, we have found that fluorination of the optimum binding site induces a dipole difference between ground and excited states larger than 0.5 D for all three molecules with the highest value of 0.69 D for fluoroperylene. We also report on synthesis of 3-fluoroterrylene and bulk spectroscopy of this compound in liquid and solid organic environments.



قيم البحث

اقرأ أيضاً

We show that congruent electric, magnetic and non-resonant optical fields acting concurrently on a polar paramagnetic (and polarisable) molecule offer possibilities to both amplify and control the directionality of the ensuing molecular states that s urpass those available in double-field combinations or in single fields alone. At the core of these triple-field effects is the lifting of the degeneracy of the projection quantum number $M$ by the magnetic field superimposed on the optical field and a subsequent coupling of the members of the doubled (for states with $M eq 0$) tunneling doublets due to the optical field by even a weak electrostatic field.
95 - D. L. Huber 2015
We present an analysis of the pairing resonances observed in photo-double-ionization studies of CnHm aromatic molecules with multiple benzene-like rings. The analysis, which is based on the Coulomb pairing model, is applied to naphthalene, anthracene , phenanthrene, pyrene and coronene, all of which have six-member rings, and azulene which is comprised of a five-member and a seven-member ring. There is a high energy resonance at ~ 40 eV that is found in all of the molecules cited and is associated with paired electrons localized on carbon sites on the perimeter of the molecule, each of which having two carbon sites as nearest neighbors. The low energy resonance at 10 eV, which is found only in pyrene and coronene, is attributed to the formation of paired electrons localized on arrays of interior carbon atoms that have the point symmetry of the molecule with each carbon atom having three nearest neighbors. The origin of the anomalous increase in the doubly charged to singly charged parent-ion ratio that is found above the 40 eV resonance in all of the cited molecules except coronene is discussed.
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate t hat one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.
Although common in nature, the self-assembly of small molecules at sold-liquid interfaces is difficult to control in artificial systems. The high mobility of dissolved small molecules limits their residence at the interface, typically restricting the self-assembly to systems under confinement or with mobile tethers between the molecules and the surface. Small hydrogen-bonding molecules can overcome these issues by exploiting group-effect stabilization to achieve non-tethered self-assembly at hydrophobic interfaces. Significantly, the weak molecular interactions with the solid makes it possible to influence the interfacial hydrogen bond network, potentially creating a wide variety of supramolecular structures. Here we investigate the nanoscale details of water and alcohols mixtures self-assembling at the interface with graphite through group effect. We explore the interplay between inter-molecular and surface interactions by adding small amounts of foreign molecules able to interfere with the hydrogen bond network and systematically varying the length of the alcohol hydrocarbon chain. The resulting supramolecular structures forming at room temperature are then examined using atomic force microscopy with insights from computer simulations. We show that the group-based self-assembly approach investigated here is general and can be reproduced on other substrates such as molybdenum disulphide and graphene oxide, potentially making it relevant for a wide variety of systems.
83 - D. L. Huber 2018
We investigate the linear behavior in the 2+ ion concentration observed in the double photoionization of a variety of aromatic molecules. We show it arises when the photoelectrons are emitted simultaneously. Neglecting the momentum of the incoming ph oton and the momentum transferred to the molecule, it follows that the momenta of the individual photoelectrons are oppositely directed and equal in magnitude. Under steady-state conditions, the ion concentration is proportional to the rate at which the ions are created which, in turn, varies as the product of the densities of states of the individual electrons. The latter vary as the square root of the kinetic energy, leading to overall linear behavior. The origin of the linear behavior in pyrrole and related molecules is attributed to the presence of atoms that destroy the periodicity of a hypothetical carbon loop. In contrast, the resonant behavior observed in pyridine and related molecules, where a fraction of the CH pairs is replaced by N atoms, is associated with electron transfer between the nitrogen atoms and carbon atoms that preserves the periodicity of the closed loop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا