ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifetimes of ultra-long-range strontium Rydberg molecules

162   0   0.0 ( 0 )
 نشر من قبل Francisco Camargo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lifetimes of the lower-lying vibrational states of ultralong-range strontium Rydberg molecules comprising one ground-state 5s2 1S0 atom and one Rydberg atom in the 5s38s 3S1 state are reported. The molecules are created in an ultracold gas held in an optical dipole trap and their numbers determined using field ionization, the product electrons being detected by a microchannel plate. The measurements show that, in marked contrast to earlier measurements involving rubidium Rydberg molecules, the lifetimes of the low-lying molecular vibrational states are very similar to those of the parent Rydberg atoms. This results because the strong p-wave resonance in low-energy electronrubidium scattering, which plays an important role in determining the molecular lifetimes, is not present for strontium. The absence of this resonance offers advantages for experiments involving strontium Rydberg atoms as impurities in quantum gases and for testing theories of molecular formation and decay.



قيم البحث

اقرأ أيضاً

The lifetimes and decay channels of ultralong-range Rydberg molecules created in a dense BEC are examined by monitoring the time evolution of the Rydberg population using field ionization. Studies of molecules with values of principal quantum number, $n$, in the range $n=49$ to $n=72$ that contain tens to hundreds of ground state atoms within the Rydberg electron orbit show that their presence leads to marked changes in the field ionization characteristics. The Rydberg molecules have lifetimes of $sim1-5,mu$s, their destruction being attributed to two main processes: formation of Sr$^+_2$ ions through associative ionization, and dissociation induced through $L$-changing collisions. The observed loss rates are consistent with a reaction model that emphasizes the interaction between the Rydberg core ion and its nearest neighbor ground-state atom. The measured lifetimes place strict limits on the time scales over which studies involving Rydberg species in cold, dense atomic gases can be undertaken and limit the coherence times for such measurements.
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp ectroscopic data, are provided for all $S$, $P$, $D$ and $F$ series of strontium and for the $^3P_2$ series of calcium. The results show qualitative differences with the alkali metal atoms, including isotropically attractive interactions of the strontium $^1S_0$ states and a greater rarity of Forster resonances. Only two such resonances are identified, both in triplet series of strontium. The angular dependence of the long range interaction is briefly discussed.
We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electro n wavefunction $R_n$. By varying the principal quantum number $n$ of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas $g^{(2)}(R_n)$. We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from $R_n = 1400 - 3200$ $a_0$, which are on the order of the thermal de Broglie wavelength for temperatures around 1 $mu$K. We observe bunching for a single-component Bose gas of $^{84}$Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of $^{87}$Sr, revealing the effects of quantum statistics.
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li ke size, polarizability and type of binding they inherit from the Rydberg atom are of interest. An open question in the field is the reduced lifetime of the molecules compared to the corresponding atomic Rydberg states. In this letter we present an experimental study on the lifetimes of the ^3Sigma (5s-35s) molecule in its vibrational ground state and in an excited state. We show that the lifetimes depends on the density of ground state atoms and that this can be described in the frame of a classical scattering between the molecules and ground state atoms. We also find that the excited molecular state has an even more reduced lifetime compared to the ground state which can be attributed to an inward penetration of the bound atomic pair due to imperfect quantum reflection that takes place in the special shape of the molecular potential.
383 - A. Duspayev , X. Han , M.A. Viray 2021
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potenti al energy curves (PECs) that are asymptotically connected with Rydberg $nP$- or $nD$-states of rubidium or cesium. The PECs exhibit deep, long-range wells which support many vibrational states of Rydberg-atom-ion molecules (RAIMs). We consider photo-association of RAIMs in both the weak and the strong optical-coupling regimes between initial and Rydberg states of the neutral atom. Experimental considerations for the realization of RAIMs are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا