ﻻ يوجد ملخص باللغة العربية
The lifetimes of the lower-lying vibrational states of ultralong-range strontium Rydberg molecules comprising one ground-state 5s2 1S0 atom and one Rydberg atom in the 5s38s 3S1 state are reported. The molecules are created in an ultracold gas held in an optical dipole trap and their numbers determined using field ionization, the product electrons being detected by a microchannel plate. The measurements show that, in marked contrast to earlier measurements involving rubidium Rydberg molecules, the lifetimes of the low-lying molecular vibrational states are very similar to those of the parent Rydberg atoms. This results because the strong p-wave resonance in low-energy electronrubidium scattering, which plays an important role in determining the molecular lifetimes, is not present for strontium. The absence of this resonance offers advantages for experiments involving strontium Rydberg atoms as impurities in quantum gases and for testing theories of molecular formation and decay.
The lifetimes and decay channels of ultralong-range Rydberg molecules created in a dense BEC are examined by monitoring the time evolution of the Rydberg population using field ionization. Studies of molecules with values of principal quantum number,
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp
We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electro
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potenti