ترغب بنشر مسار تعليمي؟ اضغط هنا

Strategic Network Formation with Attack and Immunization

154   0   0.0 ( 0 )
 نشر من قبل Shahin Jabbari
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Strategic network formation arises where agents receive benefit from connections to other agents, but also incur costs for forming links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization against attack. An agents benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework is a stylized model of settings where reachability rather than centrality is the primary concern and vertices vulnerable to attacks may reduce risk via costly measures. In the reachability benefit model without attack or immunization, the set of equilibria is the empty graph and any tree. The introduction of attack and immunization changes the game dramatically; new equilibrium topologies emerge, some more sparse and some more dense than trees. We show that, under a mild assumption on the adversary, every equilibrium network with $n$ agents contains at most $2n-4$ edges for $ngeq 4$. So despite permitting topologies denser than trees, the amount of overbuilding is limited. We also show that attack and immunization dont significantly erode social welfare: every non-trivial equilibrium with respect to several adversaries has welfare at least as that of any equilibrium in the attack-free model. We complement our theory with simulations demonstrating fast convergence of a new bounded rationality dynamic which generalizes linkstable best response but is considerably more powerful in our game. The simulations further elucidate the wide variety of asymmetric equilibria and demonstrate topological consequences of the dynamics e.g. heavy-tailed degree distributions. Finally, we report on a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.



قيم البحث

اقرأ أيضاً

Inspired by real world examples, e.g. the Internet, researchers have introduced an abundance of strategic games to study natural phenomena in networks. Unfortunately, almost all of these games have the conceptual drawback of being computationally int ractable, i.e. computing a best response strategy or checking if an equilibrium is reached is NP-hard. Thus, a main challenge in the field is to find tractable realistic network formation models. We address this challenge by investigating a very recently introduced model by Goyal et al. [WINE16] which focuses on robust networks in the presence of a strong adversary who attacks (and kills) nodes in the network and lets this attack spread virus-like to neighboring nodes and their neighbors. Our main result is to establish that this natural model is one of the few exceptions which are both realistic and computationally tractable. In particular, we answer an open question of Goyal et al. by providing an efficient algorithm for computing a best response strategy, which implies that deciding whether the game has reached a Nash equilibrium can be done efficiently as well. Our algorithm essentially solves the problem of computing a minimal connection to a network which maximizes the reachability while hedging against severe attacks on the network infrastructure and may thus be of independent interest.
We study a network formation game where agents receive benefits by forming connections to other agents but also incur both direct and indirect costs from the formed connections. Specifically, once the agents have purchased their connections, an attac k starts at a randomly chosen vertex in the network and spreads according to the independent cascade model with a fixed probability, destroying any infected agents. The utility or welfare of an agent in our game is defined to be the expected size of the agents connected component post-attack minus her expenditure in forming connections. Our goal is to understand the properties of the equilibrium networks formed in this game. Our first result concerns the edge density of equilibrium networks. A network connection increases both the likelihood of remaining connected to other agents after an attack as well the likelihood of getting infected by a cascading spread of infection. We show that the latter concern primarily prevails and any equilibrium network in our game contains only $O(nlog n)$ edges where $n$ denotes the number of agents. On the other hand, there are equilibrium networks that contain $Omega(n)$ edges showing that our edge density bound is tight up to a logarithmic factor. Our second result shows that the presence of attack and its spread through a cascade does not significantly lower social welfare as long as the network is not too dense. We show that any non-trivial equilibrium network with $O(n)$ edges has $Theta(n^2)$ social welfare, asymptotically similar to the social welfare guarantee in the game without any attacks.
Supply chains are the backbone of the global economy. Disruptions to them can be costly. Centrally managed supply chains invest in ensuring their resilience. Decentralized supply chains, however, must rely upon the self-interest of their individual c omponents to maintain the resilience of the entire chain. We examine the incentives that independent self-interested agents have in forming a resilient supply chain network in the face of production disruptions and competition. In our model, competing suppliers are subject to yield uncertainty (they deliver less than ordered) and congestion (lead time uncertainty or, soft supply caps). Competing retailers must decide which suppliers to link to based on both price and reliability. In the presence of yield uncertainty only, the resulting supply chain networks are sparse. Retailers concentrate their links on a single supplier, counter to the idea that they should mitigate yield uncertainty by diversifying their supply base. This happens because retailers benefit from supply variance. It suggests that competition will amplify output uncertainty. When congestion is included as well, the resulting networks are denser and resemble the bipartite expander graphs that have been proposed in the supply chain literature, thereby, providing the first example of endogenous formation of resilient supply chain networks, without resilience being explicitly encoded in payoffs. Finally, we show that a suppliers investments in improved yield can make it worse off. This happens because high production output saturates the market, which, in turn lowers prices and profits for participants.
How does supply uncertainty affect the structure of supply chain networks? To answer this question we consider a setting where retailers and suppliers must establish a costly relationship with each other prior to engaging in trade. Suppliers, with un certain yield, announce wholesale prices, while retailers must decide which suppliers to link to based on their wholesale prices. Subsequently, retailers compete with each other in Cournot fashion to sell the acquired supply to consumers. We find that in equilibrium retailers concentrate their links among too few suppliers, i.e., there is insufficient diversification of the supply base. We find that either reduction of supply variance or increase of mean supply, increases a suppliers profit. However, these two ways of improving service have qualitatively different effects on welfare: improvement of the expected supply by a supplier makes everyone better off, whereas improvement of supply variance lowers consumer surplus.
Motivated by applications in cyber security, we develop a simple game model for describing how a learning agents private information influences an observing agents inference process. The model describes a situation in which one of the agents (attacke r) is deciding which of two targets to attack, one with a known reward and another with uncertain reward. The attacker receives a single private sample from the uncertain targets distribution and updates its belief of the target quality. The other agent (defender) knows the true rewards, but does not see the sample that the attacker has received. This leads to agents possessing asymmetric information: the attacker is uncertain over the parameter of the distribution, whereas the defender is uncertain about the observed sample. After the attacker updates its belief, both the attacker and the defender play a simultaneous move game based on their respective beliefs. We offer a characterization of the pure strategy equilibria of the game and explain how the players decisions are influenced by their prior knowledge and the payoffs/costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا