ترغب بنشر مسار تعليمي؟ اضغط هنا

Tip-Induced Molecule Anchoring in Ni-Phthalocyanine on Au(111) Substrate

65   0   0.0 ( 0 )
 نشر من قبل Yong Chan Jeong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pinning single molecules at desired positions can provide opportunities to fabricate bottom-up designed molecular machines. Using the combined approach of scanning tunneling microscopy and density functional theory, we report on tip-induced anchoring of Niphthalocyanine molecules on an Au(111) substrate. We demonstrate that the tip-induced current leads to the dehydrogenation of a benzene-like ligand in the molecule, which subsequently creates chemical bonds between the molecule and the substrate. It is also found that the diffusivity of Ni-phthalocyanine molecules is dramatically reduced when the molecules are anchored on the Au adatoms produced by bias pulsing. The tip-induced molecular anchoring would be readily applicable to other functional molecules that contain similar ligands.



قيم البحث

اقرأ أيضاً

We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several millimeters. With low temperature spinpolarized scanning tunneling microscopy (SP-STM) we find domain walls with widths of 60 - 90 nm, which can be moved by small perpendicular magnetic fields. Spin contrast is also achieved on the graphene-covered surface, which means that the electron density in the vacuum above graphene is substantially spin-polarized. In accordance with our ab initio calculations we find an enhanced atomic corrugation with respect to the bare surface, due to the presence of the carbon pz orbitals and as a result of the quenching of Ni surface states. The latter also leads to an inversion of spinpolarization with respect to the pristine surface. Room temperature Kerr microscopy shows a stripe like domain pattern with stripe widths of 3 - 6 {mu}m. Applying in-plane-fields, domain walls start to move at about 13 mT and a single domain state is achieved at 140 mT. Via scanning electron microscopy with polarization analysis (SEMPA) a second type of modulation within the stripes is found and identified as 330 nm wide V-lines. Qualitatively, the observed surface domain pattern originates from bulk domains and their quasi-domain branching is driven by stray field reduction.
We study theoretically and experimentally the infrared (IR) spectrum of an adamantane monolayer on a Au(111) surface. Using a new STM-based IR spectroscopy technique (IRSTM) we are able to measure both the nanoscale structure of an adamantane monolay er on Au(111) as well as its infrared spectrum, while DFT-based ab initio calculations allow us to interpret the microscopic vibrational dynamics revealed by our measurements. We find that the IR spectrum of an adamantane monolayer on Au(111) is substantially modified with respect to the gas-phase IR spectrum. The first modification is caused by the adamantane--adamantane interaction due to monolayer packing and it reduces the IR intensity of the 2912 cm$^{-1}$ peak (gas phase) by a factor of 3.5. The second modification originates from the adamantane--gold interaction and it increases the IR intensity of the 2938 cm$^{-1}$ peak (gas phase) by a factor of 2.6, and reduces its frequency by 276 cm$^{-1}$. We expect that the techniques described here can be used for an independent estimate of substrate effects and intermolecular interactions in other diamondoid molecules, and for other metallic substrates.
313 - J. Dogel , R. Tsekov , W. Freyland 2015
Phase-formation of surface alloying by spinodal decomposition has been studied for the first time at an electrified interface. For this aim Zn was electrodeposited on Au(111) from the ionic liquid AlCl3-MBIC (58:42) containing 1 mM Zn(II) at differen t potentials in the underpotential range corresponding to submonolayer up to monolayer coverage. Structure evolution was observed by in situ electrochemical scanning tunneling microscopy (STM) at different times after starting the deposition via potential jumps and at temperatures of 298 K and 323 K. Spinodal or labyrinth two-dimensional structures predominate at middle coverage, both in deposition and dissolution experiments. They are characterized by a length scale of typically 5 nm which has been determined from the power spectral density of the STM images. Structure formation and surface alloying is governed by slow kinetics with a rate constant k with activation energy of 120 meV and preexponential factor of 0.17 Hz. The evolution of the structural features is described by a continuum model and is found to be in good agreement with the STM observations. From the experimental and model calculation results we conclude that the two-dimensional phase-formation in the Zn on Au(111) system is dominated by surface alloying. The phase separation of a Zn-rich and a Zn-Au alloy phase is governed by 2D spinodal decomposition.
The honeycomb lattice sets the basic arena for numerous ideas to implement electronic, photonic, or phononic topological bands in (meta-)materials. Novel opportunities to manipulate Dirac electrons in graphene through band engineering arise from supe rlattice potentials as induced by a substrate such as hexagonal boron-nitride. Making use of the general form of a weak substrate potential as dictated by symmetry, we analytically derive the low-energy minibands of the superstructure, including a characteristic 1.5 Dirac cone deriving from a three-band crossing at the Brillouin zone edge. Assuming a large supercell, we focus on a single Dirac cone (or valley) and find all possible arrangements of the low-energy electron and hole bands in a complete six-dimensional parameter space. We identify the various symmetry planes in parameter space inducing gap closures and find the sectors hosting topological minibands, including also complex band crossings that generate a valley Chern number atypically larger than one. Our map provides a starting point for the systematic design of topological bands by substrate engineering.
Landaus Fermi liquid theory is a cornerstone of quantum many body physics. At its heart is the adiabatic connection between the elementary excitations of an interacting fermion system and those of the same system with the interactions turned off. Rec ently, this tenet has been challenged with the finding of a non-Landau Fermi liquid, that is a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. In particular, a spin-1 two-channel Kondo impurity with single-ion magnetic anisotropy $D$ has a topological quantum phase transition at a critical value $D_c$: for $D < D_c$ the system behaves as an ordinary Fermi liquid with a large Fermi level spectral weight, while above $D_c$ the system is a non-Landau Fermi liquid with a pseudogap at the Fermi level, topologically characterized by a non-trivial Friedel sum rule with non-zero Luttinger integrals. Here, we develop a non-trivial extension of this new Fermi liquid theory to general multi-orbital problems with finite magnetic field and we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) metal substrate that were previously described in disconnected and conflicting ways. The differential conductance measured using a scanning tunneling microscope (STM) shows a zero-bias dip that widens when the molecule is lifted from the surface and is transformed continuously into a peak under an applied magnetic field. Numerically solving a spin-1 impurity model with single-ion anisotropy for realistic parameter values, we robustly reproduce all these central features, allowing us to conclude that iron phthalocyanine molecules on Au(111) constitute the first confirmed experimental realization of a non-Landau Fermi liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا