ترغب بنشر مسار تعليمي؟ اضغط هنا

Sherlock: Scalable Fact Learning in Images

62   0   0.0 ( 0 )
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., $<$boy$>$), (2) attributes (e.g., $<$boy, tall$>$), (3) actions (e.g., $<$boy, playing$>$), and (4) interactions (e.g., $<$boy, riding, a horse $>$). Each fact has a semantic language view (e.g., $<$ boy, playing$>$) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.



قيم البحث

اقرأ أيضاً

We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can effectively model compared to previous methods. Specifically, we infer separate latent variables representing character and font via a pair of inference networks which take as input sets of glyphs that either all share a character type, or belong to the same font. This design allows our model to generalize to characters that were not observed during training time, an important task in light of the relative sparsity of most fonts. We also put forward a new loss, adapted from prior work that measures likelihood using an adaptive distribution in a projected space, resulting in more natural images without requiring a discriminator. We evaluate on the task of font reconstruction over various datasets representing character types of many languages, and compare favorably to modern style transfer systems according to both automatic and manually-evaluated metrics.
101 - Rongmei Lin , Xiang He , Jie Feng 2021
Understanding product attributes plays an important role in improving online shopping experience for customers and serves as an integral part for constructing a product knowledge graph. Most existing methods focus on attribute extraction from text de scription or utilize visual information from product images such as shape and color. Compared to the inputs considered in prior works, a product image in fact contains more information, represented by a rich mixture of words and visual clues with a layout carefully designed to impress customers. This work proposes a more inclusive framework that fully utilizes these different modalities for attribute extraction. Inspired by recent works in visual question answering, we use a transformer based sequence to sequence model to fuse representations of product text, Optical Character Recognition (OCR) tokens and visual objects detected in the product image. The framework is further extended with the capability to extract attribute value across multiple product categories with a single model, by training the decoder to predict both product category and attribute value and conditioning its output on product category. The model provides a unified attribute extraction solution desirable at an e-commerce platform that offers numerous product categories with a diverse body of product attributes. We evaluated the model on two product attributes, one with many possible values and one with a small set of possible values, over 14 product categories and found the model could achieve 15% gain on the Recall and 10% gain on the F1 score compared to existing methods using text-only features.
We present a task and benchmark dataset for person-centric visual grounding, the problem of linking between people named in a caption and people pictured in an image. In contrast to prior work in visual grounding, which is predominantly object-based, our new task masks out the names of people in captions in order to encourage methods trained on such image-caption pairs to focus on contextual cues (such as rich interactions between multiple people), rather than learning associations between names and appearances. To facilitate this task, we introduce a new dataset, Whos Waldo, mined automatically from image-caption data on Wikimedia Commons. We propose a Transformer-based method that outperforms several strong baselines on this task, and are releasing our data to the research community to spur work on contextual models that consider both vision and language.
A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for s imilar images and lack distinctiveness, i.e., cannot properly describe the uniqueness of each image. In this paper, we aim to improve the distinctiveness of image captions through training with sets of similar images. First, we propose a distinctiveness metric -- between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of similar images. Our metric shows that the human annotations of each image are not equivalent based on distinctiveness. Thus we propose several new training strategies to encourage the distinctiveness of the generated caption for each image, which are based on using CIDErBtw in a weighted loss function or as a reinforcement learning reward. Finally, extensive experiments are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further confirmed through a user study.
Landmark localization plays an important role in medical image analysis. Learning based methods, including CNN and GCN, have demonstrated the state-of-the-art performance. However, most of these methods are fully-supervised and heavily rely on manual labeling of a large training dataset. In this paper, based on a fully-supervised graph-based method, DAG, we proposed a semi-supervised extension of it, termed few-shot DAG, ie five-shot DAG. It first trains a DAG model on the labeled data and then fine-tunes the pre-trained model on the unlabeled data with a teacher-student SSL mechanism. In addition to the semi-supervised loss, we propose another loss using JS divergence to regulate the consistency of the intermediate feature maps. We extensively evaluated our method on pelvis, hand and chest landmark detection tasks. Our experiment results demonstrate consistent and significant improvements over previous methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا