ﻻ يوجد ملخص باللغة العربية
We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., $<$boy$>$), (2) attributes (e.g., $<$boy, tall$>$), (3) actions (e.g., $<$boy, playing$>$), and (4) interactions (e.g., $<$boy, riding, a horse $>$). Each fact has a semantic language view (e.g., $<$ boy, playing$>$) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.
We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can
Understanding product attributes plays an important role in improving online shopping experience for customers and serves as an integral part for constructing a product knowledge graph. Most existing methods focus on attribute extraction from text de
We present a task and benchmark dataset for person-centric visual grounding, the problem of linking between people named in a caption and people pictured in an image. In contrast to prior work in visual grounding, which is predominantly object-based,
A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for s
Landmark localization plays an important role in medical image analysis. Learning based methods, including CNN and GCN, have demonstrated the state-of-the-art performance. However, most of these methods are fully-supervised and heavily rely on manual