Multiply union families in $mathbb{N}^n$


الملخص بالإنكليزية

Let $Asubset mathbb{N}^{n}$ be an $r$-wise $s$-union family, that is, a family of sequences with $n$ components of non-negative integers such that for any $r$ sequences in $A$ the total sum of the maximum of each component in those sequences is at most $s$. We determine the maximum size of $A$ and its unique extremal configuration provided (i) $n$ is sufficiently large for fixed $r$ and $s$, or (ii) $n=r+1$.

تحميل البحث