ﻻ يوجد ملخص باللغة العربية
I propose a method for ultrafast switching of ferroelectric polarization using mid-infrared pulses. This involves selectively exciting the highest frequency $A_1$ phonon mode of a ferroelectric material with an intense mid-infrared pulse. Large amplitude oscillations of this mode provides a unidirectional force to the lattice such that it displaces along the lowest frequency $A_1$ phonon mode coordinate because of a nonlinear coupling of the type $g Q_{textrm{P}} Q_{textrm{IR}}^2$ between the two modes. First principles calculations show that this coupling is large in transition-metal oxide ferroelectrics, and the sign of the coupling is such that the lattice displaces in the switching direction. Furthermore, I find that the lowest frequency $A_1$ mode has a large $Q_{textrm{P}}^3$ order anharmonicity, which causes a discontinuous switch of electric polarization as the pump amplitude is continuously increased.
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking r
A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time-dependence of such periodic driving? Here we d
We report a femtosecond mid-infrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator s
A central prospect of antiferromagnetic spintronics is to exploit magnetic properties that are unavailable with ferromagnets. However, this poses the challenge of accessing such properties for readout and control. To this end, light-induced manipulat
I show that a nonequilibrium paraelectric to ferroelectric transition can be induced using midinfrared pulses. This relies on a quartic $lQ_{textrm{l$_z$}}^2Q_{textrm{h$_x$}}^2$ coupling between the lowest ($Q_{textrm{l$_z$}}$) and highest ($Q_{textr