ﻻ يوجد ملخص باللغة العربية
We take a new look at the curvilinear Hilbert scheme of points on a smooth projective variety $X$ as a projective completion of the non-reductive quotient of holomorphic map germs from the complex line into $X$ by polynomial reparametrisations. Using an algebraic model of this quotient coming from global singularity theory we develop an iterated residue formula for tautological integrals over curvilinear Hilbert schemes.
In this PhD thesis we propose an algorithmic approach to the study of the Hilbert scheme. Developing algorithmic methods, we also obtain general results about Hilbert schemes. In Chapter 1 we discuss the equations defining the Hilbert scheme as subsc
Let C be a complex curve of genus g, let J(C) be its Jacobian and let R(C) be its tautological ring, that is, the group of algebraic cycles modulo algebraic equivalence. We study the algebraic structure of R(C). In particular, we give a detailed desc
Let $X$ be a projective K3 surfaces. In two examples where there exists a fine moduli space $M$ of stable vector bundles on $X$, isomorphic to a Hilbert scheme of points, we prove that the universal family $mathcal{E}$ on $Xtimes M$ can be understood
Let $K$ be a discretely-valued field. Let $Xrightarrow Spec K$ be a surface with trivial canonical bundle. In this paper we construct a weak Neron model of the schemes $Hilb^n(X)$ over the ring of integers $Rsubseteq K$. We exploit this construction
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> Lambda^* H^1(V,Z) x