ﻻ يوجد ملخص باللغة العربية
We investigate the interplay between mutual unbiasedness and product bases for multiple qudits of possibly different dimensions. A product state of such a system is shown to be mutually unbiased to a product basis only if each of its factors is mutually unbiased to all the states which occur in the corresponding factors of the product basis. This result implies both a tight limit on the number of mutually unbiased product bases which the system can support and a complete classification of mutually unbiased product bases for multiple qubits or qutrits. In addition, only maximally entangled states can be mutually unbiased to a maximal set of mutually unbiased product bases.
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.
In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement; in particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communicati
Two equivalent ways of looking for mutually unbiased bases are discussed in this note. The passage from the search for d+1 mutually unbiased bases in C(d) to the search for d(d+1) vectors in C(d*d) satisfying constraint relations is clarified. Symmet
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo
The two observables are complementary if they cannot be measured simultaneously, however they become maximally complementary if their eigenstates are mutually unbiased. Only then the measurement of one observable gives no information about the other