ترغب بنشر مسار تعليمي؟ اضغط هنا

Near Infrared studies of the carbon-monoxide and dust forming nova V5668 Sgr

66   0   0.0 ( 0 )
 نشر من قبل Dipankar P. K. Banerjee Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-infrared (NIR) observations of Nova V5668 Sgr, discovered in outburst on 2015 March 15.634 UT, between 2d to 107d after outburst. NIR spectral features are used to classify it as a FeII class of nova. The spectra follow the evolution of the spectral lines from a P Cygni stage to a pure emission phase where the shape of the profiles suggests the presence of a bipolar flow. A notable feature is the presence of carbon monoxide first overtone bands which are seen in emission. The CO emission is modeled to make estimates of the mass, temperature and column density to be (0.5--2.0)$times$ 10$^{-8}$ M$_odot$, 4000 $pm$ 300K and (0.36--1.94)$times$ 10$^{19}$ cm$^{-2}$ respectively. The $^{12}$C/$^{13}$C ratio is estimated to be $sim$ 1.5. V5668 Sgr was a strong dust producer exhibiting the classical deep dip in its optical light curve during dust formation. Analysis of the dust SED yields a dust mass of 2.7 $times$ 10${^{rm -7}}$ $M_odot $, a blackbody angular diameter of the dust shell of 42 mas and a distance estimate to the nova of 1.54 kpc which agrees with estimates made from MMRD relations.



قيم البحث

اقرأ أيضاً

We present near-infrared (1-2.5 micron) JHK photo-spectroscopic results of the unusually slow nova V5558 Sgr (2007). V5558 Sgr showed a slow climb to maximum that lasted for about 60 days and then underwent at least five strong secondary outbursts. W e have analyzed the optical light curve to derive large t2 and t3 values of 281 +/- 3 and 473 +/- 3 days respectively. An alternate approach is adopted to derive a distance estimate of 1.55 +/- 0.25 kpc as conventional MMRD relation may not be applicable for a slow nova. In the pre-maxima stage the spectra showed narrow (FWHM ~ 400 - 550 km/s and strong emission lines of Paschen and Brackett series with prominent P-Cygni components. In the later phase the spectra show significant changes with the development of strong and broad ~ 1000 km/s emission lines of HI, HeI, OI, and NI and some uncommon Fe II emission lines. No evidence of dust formation is seen. V5558 Sgr has been shown to be a rare hybrid nova showing a transition from He/N to Fe II type from optical spectra. However the near-infrared data do not show such a transition and we discuss this anomalous behavior. A recombination analysis of the Brackett lines allows us to constrain the electron density and emission measure during the early optically thick phase and to estimate the mass of the ejecta to be (6.0 +/- 1.5) x 10^(-4) Msun, assuming a filling factor of unity, from later observations.
We present 5-28 micron SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during 500 days following outburst. Dust condensation comme nced by 82 days after outburst at a temperature of 1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 x 10-7 solar masses if the dust was amorphous carbon. The average grain radius grew to a maximum of 2.9 microns at a temperature of 720 K around day 113 when the shell visual optical depth was Tau = 5.4. Maximum grain growth was followed by followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the super-soft X-ray turn-on and turn-off times, suggests a WD mass of 1.1 solar masses. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella r extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C_2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its nova envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne II] emission at 12.8 micron was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 micron originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.
We present multi-epoch near-infrared photo-spectroscopic observations of Nova Cephei 2014 and Nova Scorpii 2015, discovered in outburst on 2014 March 8.79 UT and 2015 February 11.84 UT respectively. Nova Cep 2014 shows the conventional NIR characteri stics of a Fe II class nova characterized by strong CI, HI and O I lines, whereas Nova Sco 2015 is shown to belong to the He/N class with strong He I, HI and OI emission lines. The highlight of the results consists in demonstrating that Nova Sco 2015 is a symbiotic system containing a giant secondary. Leaving aside the T CrB class of recurrent novae, all of which have giant donors, Nova Sco 2015 is shown to be only the third classical nova to be found with a giant secondary. The evidence for the symbiotic nature is three-fold; first is the presence of a strong decelerative shock accompanying the passage of the novas ejecta through the giants wind, second is the H$alpha$ excess seen from the system and third is the spectral energy distribution of the secondary in quiescence typical of a cool late type giant. The evolution of the strength and shape of the emission line profiles shows that the ejecta velocity follows a power law decay with time ($t^{-1.13 pm 0.17}$). A Case B recombination analysis of the H I Brackett lines shows that these lines are affected by optical depth effects for both the novae. Using this analysis we make estimates for both the novae of the emission measure $n_e^2L$, the electron density $n_e$ and the mass of the ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا