In the present paper, we consider local moves on classical and welded diagrams: (self-)crossing change, (self-)virtualization, virtual conjugation, Delta, fused, band-pass and welded band-pass moves. Interrelationship between these moves is discussed and, for each of these move, we provide an algebraic classification. We address the question of relevant welded extensions for classical moves in the sense that the classical quotient of classical object embeds into the welded quotient of welded objects. As a by-product, we obtain that all of the above local moves are unknotting operations for welded (long) knots. We also mention some topological interpretations for these combinatorial quotients.