This work focuses on the control and understanding of a gravitationally interacting elementary quantum system. It offers a new way of looking at gravitation based on quantum interference: an ultracold neutron, a quantum particle, as an object and as a tool. The ultracold neutron as a tool reflects from a mirror in well-defined quantum states in the gravity potential of the earth allowing to apply the concept of gravity resonance spectroscopy (GRS). GRS relies on frequency measurements, which provide a spectacular sensitivity.