ﻻ يوجد ملخص باللغة العربية
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{-3/2}|A|^2 exp(-2kappa L/sqrt{3})$, where $kappa$ is the bound-state momentum and $|A|^2$ denotes the three-body analog of the asymptotic normalization constant, which encodes the information about the short-range interactions in the three-body system.
In this work, based on consideration of periodicity and asymptotic forms of wave function, we propose a novel approach to the solution of finite volume three-body problem by mapping a three-body problem into a higher dimensional two-body problem. The
A formalism for describing charged particles interaction in both a finite volume and a uniform magnetic field is presented. In the case of short-range interaction between charged particles, we show that the factorization between short-range physics a
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The num
Using the framework of non-relativistic effective field theory, the finite-volume ground-state energy shift is calculated up-to-and-including $O(L^{-6})$ for the system of three pions in the channel with the total isospin $I=1$. The relativistic corr
We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher re