ترغب بنشر مسار تعليمي؟ اضغط هنا

Active shape correction of a thin glass/plastic X-ray mirror

103   0   0.0 ( 0 )
 نشر من قبل Daniele Spiga
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project.



قيم البحث

اقرأ أيضاً

We present a method for the manufacturing of thin shells of glass, which appears promising for the development of active optics for future space telescopes. The method exploits the synergy of different mature technologies, while leveraging the commer cial availability of large, high-quality sheets of glass, with thickness up to few millimeters. The first step of the method foresees the pre-shaping of flat substrates of glass by replicating the accurate shape of a mold via hot slumping technology. The replication concept is advantageous for making large optics composed of many identical or similar segments. After the hot slumping, the shape error residual on the optical surface is addressed by applying a deterministic sub-aperture technology as computer-controlled bonnet polishing and/or ion beam figuring. Here we focus on the bonnet polishing case, during which the thin, deformable substrate of glass is temporary stiffened by a removable holder. In this paper, we report on the results so far achieved on a 130 mm glass shell case study.
In-orbit experience has shown that soft protons are funneled more efficiently through focusing Wolter-type optics of X-ray observatories than simulations predicted. These protons can degrade the performance of solid-state X-ray detectors and contribu te to the instrumental background. Since laboratory measurements of the scattering process are rare, an experiment for grazing angles has been set up at the accelerator facility of the University of Tubingen. Systematic measurements at incidence angles ranging from 0.3{deg} to 1.2{deg} with proton energies around 250 keV, 500 keV, and 1 MeV have been carried out. Parts of spare mirror shells of the eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument have been used as scattering targets. This publication comprises a detailed description of the setup, the calibration and normalization methods, and the scattering efficiency and energy loss results. A comparison of the results with a theoretical scattering description and with simulations is included as well.
The advent of extremely large telescopes will bring unprecedented light-collecting power and spatial resolution, but it will also lead to a significant increase in the size and complexity of focal-plane instruments. The use of freeform mirrors could drastically reduce the number of components in optical systems. Currently, manufacturing issues limit the common use of freeform mirrors at short wavelengths. This article outlines the use of freeform mirrors in astronomical instruments with a description of two efficient freeform optical systems. A new manufacturing method is presented which seeks to overcome the manufacturing issues through hydroforming of thin polished substrates. A specific design of an active array is detailed, which will compensate for residual manufacturing errors, thermoelastic deformation, and gravity-induced errors during observations. The combined hydroformed mirror and the active array comprise the Freeform Active Mirror Experiment, which will produce an accurate, compact, and stable freeform optics dedicated to visible and near-infrared observations.
We propose the rest-frame 2-10 keV photon index, ga, acting as an indicator of the bolometric correction, lb/$L_{rm 2-10keV}$ (where lb~ is the bolometric luminosity and $L_{rm 2-10keV}$ is the rest-frame 2-10 keV luminosity), in radio-quiet active g alactic nuclei (AGNs). Correlations between ga~ and both bolometric correction and Eddington ratio are presented, based on simultaneous X-ray, UV, and optical observations of reverberation -mapped AGNs. These correlations can be compared with those for high-redshift AGNs to check for any evolutionary effect. Assuming no evolutionary effect in AGNs spectral properties, together with the independent estimates of $L_{rm 2-10keV}$, the bolometric correction, Eddington ratio, and black hole (BH) mass can all be estimated from these correlations for high-redshift AGNs, with the mean uncertainty of a factor of 2-3. If there are independent estimates of BH masses, ga~ for high-redshift AGNs can be used to determine their true lb~ and $L_{rm 2-10keV}$, and in conjunction with the redshift, can be potentially used to place constraints on cosmology by comparison with the rest-frame 2-10 keV flux. We find that the true $L_{rm 2-10keV}$ estimated from ga~ for the brightest Type I AGNs with $z<1$ in the Lockman Hole is generally in agreement with the observed $L_{rm 2-10keV}$. However, there are still many uncertainties, such as the accurate determination of the intrinsic ga~ for distant AGNs and the large uncertainty in the luminosities obtained, which call for significant further study before ``AGN cosmology can be considered a viable technique.
Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue durin g the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا