ﻻ يوجد ملخص باللغة العربية
Among the recently discovered iron-based superconductors, ultrathin films of FeSe grown on SrTiO3 substrates have uniquely evolved into a high superconducting-transition-temperature (TC) material. The mechanisms for the high-TC superconductivity are ongoing debate mainly with the superconducting gap characterized with in-situ analysis for FeSe films grown by bottom-up molecular-beam epitaxy. Here, we demonstrate the alternative access to investigate the high-TC superconductivity in ultrathin FeSe with top-down electrochemical etching technique in three-terminal transistor configuration. In addition to the high-TC FeSe on SrTiO3, the electrochemically etched ultrathin FeSe transistor on MgO also exhibits superconductivity around 40 K, implying that the application of electric-field effectively contributes to the high-TC superconductivity in ultrathin FeSe regardless of substrate material. Moreover, the observable critical thickness for the high-TC superconductivity is expanded up to 10-unit-cells under applying electric-field and the insulator-superconductor transition is electrostatically controlled. The present demonstration implies that the electric-field effect on both conduction and valence bands plays a crucial role for inducing high-TC superconductivity in FeSe.
In this study, we investigated the gate voltage dependence of $T_{mathrm c}$ in electrochemically etched FeSe films with an electric-double layer transistor structure. The $T_{mathrm c}^{mathrm {zero}}$ value of the etched FeSe films with a lower gat
Charge transfer and electron-phonon coupling (EPC) are proposed to be two important constituents associated with enhanced superconductivity in the single unit cell FeSe films on oxide surfaces. Using high-resolution electron energy loss spectroscopy
Searching for superconducting materials with high transition temperature (TC) is one of the most exciting and challenging fields in physics and materials science. Although superconductivity has been discovered for more than 100 years, the copper oxid
The intriguing role of nematicity in iron-based superconductors, defined as broken rotational symmetry below a characteristic temperature, is an intensely investigated contemporary subject. Nematicity is closely connected to the structural transition
Single monolayer FeSe film grown on Nb-doped SrTiO$_3$(001) substrate shows the highest superconducting transition temperature (T$_C$ $sim$ 100 K) among the iron-based superconductors (iron-pnictide), while T$_C$ of bulk FeSe is only $sim$ 8 K. Antif