ﻻ يوجد ملخص باللغة العربية
Jets coexist with planetary scale waves in the turbulence of planetary atmospheres. The coherent component of these structures arises from cooperative interaction between the coherent structures and the incoherent small-scale turbulence in which they are embedded. It follows that theoretical understanding of the dynamics of jets and planetary scale waves requires adopting the perspective of statistical state dynamics (SSD) which comprises the dynamics of the interaction between coherent and incoherent components in the turbulent state. In this work the S3T implementation of SSD for barotropic beta-plane turbulence is used to develop a theory for the jet/wave coexistence regime by separating the coherent motions consisting of the zonal jets together with a selection of large-scale waves from the smaller scale motions which constitute the incoherent component. It is found that mean flow/turbulence interaction gives rise to jets that coexist with large-scale coherent waves in a synergistic manner. Large-scale waves that would only exist as damped modes in the laminar jet are found to be transformed into exponentially growing waves by interaction with the incoherent small scale turbulence which results in a change in the mode structure allowing the mode to tap the energy of the mean jet. This mechanism of destabilization differs fundamentally and serves to augment the more familiar S3T instabilities in which jets and waves arise from homogeneous turbulence with energy source exclusively from the incoherent eddy field and provides further insight into the cooperative dynamics of the jet/waves coexistence regime in planetary turbulence.
Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (`zonostrophic instability) which occurs as the turbulence intensity increases. This has been demonstrated usi
By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of
Coherent jets with most of the kinetic energy of the flow are common in atmospheric turbulence. In the gaseous planets these jets are maintained by incoherent turbulence excited by small-scale convection. Large-scale coherent waves are sometimes obse
Using a one-layer QG model, we study the effect of random monoscale topography on forced beta-plane turbulence. The forcing is a uniform steady wind stress that produces both a uniform large-scale zonal flow $U(t)$ and smaller-scale macroturbulence (
Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-pl