ترغب بنشر مسار تعليمي؟ اضغط هنا

PopIII-star siblings in IZw18 and WRs in metal-poor galaxies unveiled from integral field spectroscopy

150   0   0.0 ( 0 )
 نشر من قبل Carolina Kehrig
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeII4686-emitting region, and indicate for the first time that peculiar, very hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.



قيم البحث

اقرأ أيضاً

We present a detailed 2D study of the ionized ISM of IZw18 using new PMAS-IFU optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understa nding the properties most closely resembling those prevailing at distant starbursts. Our IFU-aperture (~ 1.4 kpc x 1.4 kpc) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the NW knot and thereabouts. We detect a Wolf-Rayet feature near the NW knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity-indicator R23 and the ionization parameter (as traced by [OIII]/[OII]) across IZw18. Over ~ 0.30 kpc^2, using the [OIII]4363 line, we compute Te[OIII] values (~ 15000 - 25000 K), and oxygen abundances are derived from the direct determinations of Te[OIII]. More than 70% of the higher-Te[OIII] (> 22000 K) spaxels are HeII4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 +/- 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.
181 - Yong Shi 2014
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge n below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon Monoxide (CO) emission is unreliable as tracers of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low-spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially-resolved infrared observations of two galaxies with oxygen abundances below 10 per cent solar, and show that stars form very inefficiently in seven star-forming clumps of these galaxies. The star formation efficiencies are more than ten times lower than found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.
185 - F. Annibali 2013
We have derived the star formation history (SFH) of the blue compact dwarf galaxy IZw18 through comparison of deep HST/ACS data with synthetic color magnitude diagrams. A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that IZw18 is not a truly young galaxy, having started forming stars earlier than ~1 Gyr ago, and possibly at epochs as old as a Hubble time. In IZw18s main body we infer a lower limit of ~2 x 10^{6} M_sun for the mass locked-up in old stars. IZw18 s main body has been forming stars very actively during the last ~10 Myr, with an average star formation rate (SFR) as high as ~1 M_sun/yr (or ~2 x 10^{-5} M_sun yr^{-1} pc^{-2}). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in IZw18, resembling primeval galaxies in the early Universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed.
Observations of galaxy isophotes, longs-slit kinematics and high-resolution photometry suggested a possible dichotomy between two distinct classes of E galaxies. But these methods are expensive for large galaxy samples. Instead, integral-field spectr oscopic can efficiently recognize the shape, dynamics and stellar population of complete samples of early-type galaxies (ETGs). These studies showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics. We showed there is a dichotomy in the dynamics of the two classes. The slow rotators are weakly triaxial and dominate above $M_{rm crit}approx2times10^{11} M_odot$. Below $M_{rm crit}$, the structure of fast rotators parallels that of spiral galaxies. There is a smooth sequence along which, the metals content, the enhancement in $alpha$-elements, and the weight of the stellar initial mass function, all increase with the CENTRAL mass density slope, or bulge mass fraction, while the molecular gas fraction correspondingly decreases. The properties of ETGs on galaxy scaling relations, and in particular the $(M_{ast}, R_{rm e})$ diagram, and their dependence on environment, indicate two main independent channels for galaxy evolution. Fast rotators ETGs start as star forming disks and evolve trough a channel dominated by gas accretion, bulge growth and quenching. While slow rotators assemble near the center of massive halos via intense star formation at high redshift, and remain as such for the rest of their evolution via a channel dominated by gas poor mergers. This is consistent with independent studies of the galaxies redshift evolution.
New integral field spectroscopy has been obtained for IZw18, the nearby lowest-metallicity galaxy considered our best local analog of systems forming at high-z. Here we report the spatially resolved spectral map of the nebular HeII4686 emission in IZ w18, from which we derived for the first time its total HeII-ionizing flux. Nebular HeII emission implies the existence of a hard radiation field. HeII-emitters are observed to be more frequent among high-z galaxies than for local objects. So investigating the HeII-ionizing source(s) in IZw18 may reveal the ionization processes at high-z. HeII emission in star-forming galaxies, has been suggested to be mainly associated with Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the HeII-ionization at all times, in particular at lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of HeII-ionizing photons. Our data indicate that conventional HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular HeII4686 emission in IZw18. We find that the HeII-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the HeII-ionization budget measured, while only the latter models could explain the highest values of HeII4686/Hbeta observed. The presence of such peculiar stars in IZw18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early Universe can be found here in our cosmic backyard.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا