ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Probes of Radio Wave Propagation near Dielectric Boundaries and Implications for Neutrino Detection

57   0   0.0 ( 0 )
 نشر من قبل Dave Besson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental efforts to measure neutrinos by radio-frequency (RF) signals resulting from neutrino interactions in-ice have intensified over the last decade. Recent calculations indicate that one may dramatically improve the sensitivity of ultra-high energy (UHE; >EeV) neutrino experiments via detection of radio waves trapped along the air-ice surface. Detectors designed to observe the Askaryan effect currently search for RF electromagnetic pulses propagating through bulk ice, and could therefore gain sensitivity if signals are confined to the ice-air boundary. To test the feasibilty of this scenario, measurements of the complex radio-frequency properties of several air-dielectric interfaces were performed for a variety of materials. Two-dimensional surfaces of granulated fused silica (sand), both in the lab as well as occurring naturally, water doped with varying concentrations of salt, natural rock salt formations, granulated salt and ice itself were studied, both in North America and also Antarctica. In no experiment do we observe unambiguous surface wave propagation, as would be evidenced by signals travelling with reduced signal loss and/or superluminal velocities, compared to conventional EM wave propagation.



قيم البحث

اقرأ أيضاً

Ongoing experimental efforts in Antarctica seek to detect ultra-high energy neutrinos by measurement of radio-frequency (RF) Askaryan radiation generated by the collision of a neutrino with an ice molecule. An array of RF antennas, deployed either in -ice or in-air, is used to infer the properties of the neutrino. To evaluate their experimental sensitivity, such experiments require a refractive index model for ray tracing radio-wave trajectories from a putative in-ice neutrino interaction point to the receiving antennas; this gives the degree of signal absorption or ray bending from source to receiver. The gradient in the density profile over the upper 200 meters of Antarctic ice, coupled with Fermats least-time principle, implies ray bending and the existence of forbidden zones for predominantly horizontal signal propagation at shallow depths. After re-deriving the formulas describing such shadowing, we report on experimental results that, somewhat unexpectedly, demonstrate the existence of electromagnetic wave transport modes from nominally shadowed regions. The fact that this shadow-signal propagation is observed both at South Pole and the Ross Ice Shelf in Antarctica suggests that the effect may be a generic property of polar ice, with potentially important implications for experiments seeking to detect neutrinos.
The Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect high-energy neutrinos which, via in-ice interactions, produce coherent radiation at frequencies up to 1000 MHz. In Dec. 2018, a custom high-amplitude radio-frequency tr ansmitter was lowered into the 1700 m SPICE ice core to provide test sources for ARA receiver stations sensitive to vertical and horizontal polarizations. For these tests, signal geometries correspond to obliquely propagating radio waves from below. The ARA collaboration has recently measured the polarization-dependent time delay variation, and report more significant time delays for trajectories perpendicular to ice flow. Here we use fabric data from the SPICE ice core to construct a bounding model for the ice birefringence and the polarization time delays across ARA. The data-model comparison is consistent with the vertical girdle fabric at the South Pole having the prevailing horizontal crystallographic axis oriented near-perpendicular to ice flow. This study presents the possibility that ice birefringence can be used to constrain the range to a neutrino interaction, and hence aid in neutrino energy reconstruction, for in-ice experiments such as ARA.
An antenna array devoted to the autonomous radio-detection of high energy cosmic rays is being deployed on the site of the 21 cm array radio telescope in XinJiang, China. Thanks in particular to the very good electromagnetic environment of this remot e experimental site, self-triggering on extensive air showers induced by cosmic rays has been achieved with a small scale prototype of the foreseen antenna array. We give here a detailed description of the detector and present the first detection of extensive air showers with this prototype.
Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during propagation through the Earths ionosphere. Pulse dispersion must therefore be corrected to maximise the received signal to noise ratio and subsequent chances of detection. The pulse dispersion characteristic may also provide a powerful signature to determine the lunar origin of a pulse and discriminate against pulses of terrestrial radio frequency interference (RFI). This characteristic is parameterised by the instantaneous Total Electron Content (TEC) of the ionosphere and therefore an accurate knowledge of the ionospheric TEC provides an experimental advantage for the detection and identification of lunar Cherenkov pulses. We present a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses using lunar Faraday rotation measurements combined with geomagnetic field models.
Ultra high energy neutrinos ($E_ u > 10^{16.5}$eV$)$ are efficiently measured via radio signals following a neutrino interaction in ice. An antenna placed $mathcal{O}$(15 m) below the ice surface will measure two signals for the vast majority of even ts (90% at $E_ u$=$10^{18}$eV$)$: a direct pulse and a second delayed pulse from a reflection off the ice surface. This allows for a unique identification of neutrinos against backgrounds arriving from above. Furthermore, the time delay between the direct and reflected signal (DnR) correlates with the distance to the neutrino interaction vertex, a crucial quantity to determine the neutrino energy. In a simulation study, we derive the relation between time delay and distance and study the corresponding experimental uncertainties in estimating neutrino energies. We find that the resulting contribution to the energy resolution is well below the natural limit set by the unknown inelasticity in the initial neutrino interaction. We present an in-situ measurement that proves the experimental feasibility of this technique. Continuous monitoring of the local snow accumulation in the vicinity of the transmit and receive antennas using this technique provide a precision of $mathcal{O}$(1 mm) in surface elevation, which is much better than that needed to apply the DnR technique to neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا