ﻻ يوجد ملخص باللغة العربية
We propose an implementation of a universal quantum gate between pairs of spatially separated atoms in a microwave cavity at finite temperature. The gate results from reversible laser excitation of Rydberg states of atoms interacting with each other via exchange of virtual photons through a common cavity mode. Quantum interference of different transition paths between the two-atom ground and double-excited Rydberg states makes both the transition amplitude and resonance largely insensitive to the excitations in the microwave cavity quantum bus which can therefore be in any superposition or mixture of photon number states. Our scheme for attaining ultralong-range interactions and entanglement also applies to mesoscopic atomic ensembles in the Rydberg blockade regime and is scalable to many ensembles trapped within a centimeter sized microwave resonator.
We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: Dipolar forces
We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)
Quantum illumination (QI) is a quantum sensing protocol mainly for target detection which uses entangled signal-idler photon pairs to enhance the detection efficiency of low-reflectivity objects immersed in thermal noisy environments. Especially, due
We propose how to achieve strong photon antibunching effect in a cavity-QED system coupled with two Rydberg-Rydberg interaction atoms. Via calculating the equal time second order correlation function g(2)(0), we find that the unconventional photon bl