ترغب بنشر مسار تعليمي؟ اضغط هنا

A `Water Spout Maser Jet in S235AB-MIR

56   0   0.0 ( 0 )
 نشر من قبل Ross Burns Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on annual parallax and proper motion observations of H2O masers in S235AB-MIR, which is a massive young stellar object in the Perseus Arm. Using multi-epoch VLBI astrometry we measured a parallax of pi = 0.63 +- 0.03 mas, corresponding to a trigonometric distance of D = 1.56+-0.09 kpc, and source proper motion of ( u alpha cos d , u d) = (0.79 +- 0.12, -2.41 +- 0.14) mas/yr. Water masers trace a jet of diameter 15 au which exhibits a definite radial velocity gradient perpendicular to its axis. 3D maser kinematics were well modelled by a rotating cylinder with physical parameters: v_out = 45+-2 km/s, v_rot = 22+-3 km/s, i = 12+-2 degrees, which are the outflow velocity, tangential rotation velocity and line-of-sight inclination, respectively. One maser feature exhibited steady acceleration which may be related to the jet rotation. During our 15 month VLBI programme there were three `maser burst events caught `in the act which were caused by the overlapping of masers along the line of sight.



قيم البحث

اقرأ أيضاً

Context. The S235AB star forming region houses a massive young stellar object which has recently been reported to exhibit possible evidence of jet rotation - an illusive yet crucial component of disk aided star formation theories. Aims. To confirm the presence of a molecular counterpart to the jet and to further study the molecular environment in in S235AB. Methods. We search for velocity wings in the line emission of thermal SiO (J=2-1, v=0), a tracer of shocked gas, which would indicate the presence of jet activity. Utilising other lines detected in our survey we use the relative intensities of intra species transitions, isotopes and hyperfine transitions to derive opacities, temperatures, column densities and abundances of various molecular species in S235AB. Results. The SiO (J=2-1, v=0) emission exhibits velocity wing of up to 75 km/s above and below the velocity of the star, indicating the presence of a jet. The molecular environment describes an evolutionary stage resemblant of a hot molecular core.
This paper reports observations of a 22 GHz water maser `superburst in the G25.65+1.05 massive star forming region, conducted in response to an alert from the Maser Monitoring Organisation (M2O). Very long baseline interferometry (VLBI) observations using the European VLBI Network (EVN) recorded a maser flux density of $1.2 times 10^{4}$ Jy. The superburst was investigated in the spectral, structural and temporal domains and its cause was determined to be an increase in maser path length generated by the superposition of multiple maser emitting regions aligning in the line of sight to the observer. This conclusion was based on the location of the bursting maser in the context of the star forming region, its complex structure, and its rapid onset and decay.
We present the first detection of the H40a, H34a and H31a radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity, ionized jet in the Cepheus A HW2 star forming region. From our single-dish and interferometric observations , we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity linewidths of ~1100 kms-1. From the linewidths, we estimate a terminal velocity for the ionized gas in the jet of >500 kms-1, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40a, H34a and H31a lines are 43, 229 and 280 kms-1, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL maser toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-aperture angle of 18 deg, electron density distribution varying as r^(-2.11) and turbulent and expanding wind velocities of 60 and 500 kms-1.
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L$_od ot$. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study this processes with very high angular resolution. This type of emission has been confirmed in objects with L$_{rm bol}ge 1$ L$_odot$. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 { (a Class 0 protostar of L$_{rm bol}simeq 3.6-5.3$ L$_odot$)}, and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L$_{rm bol}le 1$ L$_odot$, or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.
We report the detection of a 22GHz water maser line in the nearest (D~3.8Mpc) radio galaxy Centaurus A using the Australia Telescope Compact Array (ATCA). The line is centered at a velocity of ~960kms-1, which is redshifted by about 400kms-1 from the systemic velocity. Such an offset, as well as the width of ~120kms-1, could be consistent with either a nuclear maser arising from an accretion disk of the central supermassive black hole, or for a jet maser that is emitted from the material that is shocked near the base of the jet in Centaurus,A. The best spatial resolution of our ATCA data constrains the origin of the maser feature within <3pc from the supermassive black hole. The maser exhibits a luminosity of ~1Lo, which classifies it as a kilomaser, and appears to be variable on timescales of months. A kilomaser can also be emitted by shocked gas in star forming regions. Given the small projected distance from the core, the large offset from systemic velocity, as well as the smoothness of the line feature, we conclude that a jet maser line emitted by shocked gas around the base of the AGN is the most likely explanation. For this scenario we can infer a minimum density of the radio jet of ~>10cm-3, which indicates substantial mass entrainment of surrounding gas into the propagating jet material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا