ﻻ يوجد ملخص باللغة العربية
Peculiarities of the formation of a neutron enhanced standing wave in the structure with a thin highly absorbing layer of gadolinium are considered in the article. An analogue of the poisoning effect well known in reactor physics was found. The effect is stronger for the Nb/Gd/Nb system. Despite of this effect, for a Nb/Gd bilayer and a Nb/Gd/Nb trilayer placed between Al2O3 substrate and Cu layer, it is shown theoretically and experimentally that one order of magnitude enhancement of neutron density is possible in the vicinity of the Gd layer. This enhancement makes it possible to study domain formation in the Gd layer under transition of the Nb layer(s) into the superconducting state (cryptoferromagnetic phase).
Results of experimental investigations of a neutron resonances width in planar waveguides using the time-of-flight reflectometer REMUR of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. The intensity o
A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the meth
We evaluate the reflectivity of neutron mirrors composed of certain heavy nuclei which possess strong neutron-nucleus resonances in the eV energy range. We show that the reflectivity of such a mirror for some nuclei can in principle be high enough ne
In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chambe
There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the e