ﻻ يوجد ملخص باللغة العربية
The spin Hall effect creates a spin current in response to a charge current in a material that has strong spin-orbit coupling. The size of the spin Hall effect in many materials is disputed, requiring independent measurements of the effect. We develop a novel mechanical method to measure the size of the spin Hall effect, relying on the equivalence between spin and angular momentum. The spin current carries angular momentum, so the flow of angular momentum will result in a mechanical torque on the material. We determine the size and geometry of this torque and demonstrate that it can be measured using a nanomechanical device. Our results show that measurement of the spin Hall effect in this manner is possible and also opens possibilities for actuating nanomechanical systems with spin currents.
Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex
An intriguing feature of spintronics is the use of pure spin-currents to manipulate magnetization, e.g., spin-currents can switch magnetization in spin-torque MRAM, a next-generation DRAM alternative. Giant spin-currents via the spin Hall effect grea
This is a brief review of the phenomenology of the spin Hall effect and related phenomena.
We develop an analytical theory of the low-frequency $ac$ quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the $ac$ QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is c
Spin transistors and spin Hall effects have been two separate leading directions of research in semiconductor spintronics which seeks new paradigms for information processing technologies. We have brought the two directions together to realize an all