ترغب بنشر مسار تعليمي؟ اضغط هنا

The volume of Gaussian states by information geometry

141   0   0.0 ( 0 )
 نشر من قبل Domenico Felice
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resulting statistical manifold with the Fisher-Rao metric. We then evaluate the volume of classical, quantum and quantum entangled states for two-mode systems showing chains of strict inclusion.



قيم البحث

اقرأ أيضاً

In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the autho rs, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant-Kirillov-Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjoint orbits, seen as spaces of mixed states, is also discussed.
The problem of reconstructing information on a physical system from data acquired in long sequences of direct (projective) measurements of some simple physical quantities - histories - is analyzed within quantum mechanics; that is, the quantum theory of indirect measurements, and, in particular, of non-demolition measurements is studied. It is shown that indirect measurements of time-independent features of physical systems can be described in terms of quantum-mechanical operators belonging to an algebra of asymptotic observables. Our proof involves associating a natural measure space with certain sets of histories of a system and showing that quantum-mechanical states of the system determine probability measures on this space. Our main result then says that functions on that space of histories measurable at infinity (i.e., functions that only depend on the tails of histories) correspond to operators in the algebra of asymptotic observables.
This is a sequel to the paper [K. Fujii : SIGMA {bf 7} (2011), 022, 12 pages]. In this paper we treat a non-Gaussian integral based on a quartic polynomial and make a mathematical experiment by use of MATHEMATICA whether the integral is written in terms of its discriminant or not.
We find a relationship between the dynamics of the Gaussian wave packet and the dynamics of the corresponding Gaussian Wigner function from the Hamiltonian/symplectic point of view. The main result states that the momentum map corresponding to the na tural action of the symplectic group on the Siegel upper half space yields the covariance matrix of the corresponding Gaussian Wigner function. This fact, combined with Kostants coadjoint orbit covering theorem, establishes a symplectic/Poisson-geometric connection between the two dynamics. The Hamiltonian formulation naturally gives rise to corrections to the potential terms in the dynamics of both the wave packet and the Wigner function, thereby resulting in slightly different sets of equations from the conventional classical ones. We numerically investigate the effect of the correction term and demonstrate that it improves the accuracy of the dynamics as an approximation to the dynamics of expectation values of observables.
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamilt onian structure of Ehrenfests theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models previously appeared in the chemical physics literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا