ﻻ يوجد ملخص باللغة العربية
A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise due to the competition of localized and itinerant electronic degrees of freedom. While the respective limits of well-localized or entirely itinerant ground states are well-understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and non-bonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum-mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutoniums magnetism, but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.
We have performed Diffusion Quantum Monte Carlo simulations of Li clusters showing that Resonating-Valence-Bond (RVB) pairing correlations between electrons provide a substantial contribution to the cohesive energy. The RVB effects are identified in
We have investigated the optical conductivity of the prominent valence fluctuating compounds EuIr2Si2 and EuNi2P2 in the infrared energy range to get new insights into the electronic properties of valence fluctuating systems. For both compounds we ob
CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a strongly valence fluctuating compound, as we confirm by hard x-ray photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo temperature of $T_{mathrm{K}}sim
Plutonium displays phase transitions with enormous volume differences among its phases and both its Pauli like magnetic susceptibility and resistivity are an order of magnitude larger than those of simple metals. Curium is also highly resistive but i
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corr