ﻻ يوجد ملخص باللغة العربية
Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure-broadened line profiles of deuterated methane (CH3D) at 4.66 microns to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiters 5-micron spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees S has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiters belt-zone structure. We also constrained the vertical profile of water in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for P<4.5 bars and then follows the water profile observed by the Galileo Probe. The STZ has a saturated water profile above its cloud top between 4 and 5 bars.
We have obtained high-resolution spectra of Jupiters Great Red Spot (GRS) between 4.6 and 5.4 microns using telescopes on Mauna Kea in order to derive gas abundances and to constrain its cloud structure between 0.5 and 5~bars. We used line profiles o
The field of exoplanet atmospheric characterization is trending towards comparative studies involving many planets, and using hierarchical modelling is a natural next step. Here we demonstrate two use cases. We first use hierarchical modelling to qua
Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations
We present ground-based high resolution N-band spectra (Delta v = 15 km/s) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main sequence stars AS 205N and RNO 90, selected based on detections of rotational wate