ﻻ يوجد ملخص باللغة العربية
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 sq. deg. First, a CORE quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r < 22) should return ~ 70 quasars per sq. deg. at redshifts 0.9 < z < 2.2 and ~7 z > 2.1 quasars per sq. deg. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 z > 2.1 quasars per sq. deg. to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS North (South) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near z~1.5. eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyman-alpha Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra of over 800,000 quasars.
We describe the algorithm used to select the Emission Line Galaxy (ELG) sample at $z sim 0.85$ for the extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey IV, using photometric data from the DECam Legacy Survey. Our selec
We describe the algorithm used to select the Luminous Red Galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-Field I
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribu
We present the characteristics of the Damped Lyman-$alpha$ (DLA) systems found in the data release DR16 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey (SDSS). DLAs were identified using the convolution
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) desi