ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk disorder in the superconductor affects proximity-induced topological superconductivity

162   0   0.0 ( 0 )
 نشر من قبل Hoi-Yin Hui
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate effects of ordinary nonmagnetic disorder in the bulk of a superconductor on magnetic adatom-induced Shiba states and on the proximity-induced superconductivity in a nanowire that is tunnel coupled to the bulk superconductor. Within the formalism of self-consistent Born approximation, we show that, contrary to widespread belief, the proximity-induced topological superconductivity can be adversely affected by the bulk superconducting disorder even in the absence of any disorder in the nanowire (or the superconductor-nanowire interface) when the proximity tunnel coupling is strong. In particular, bulk disorder can effectively randomize the Shiba-state energies. In the case of a proximate semiconductor nanowire, we numerically compute the dependence of the effective disorder and pairing gap induced on the wire as a function of the semiconductor-superconductor tunnel coupling. We find that the scaling exponent of the induced disorder with respect to coupling is always larger than that of the induced gap, implying that at weak coupling, the proximity-induced pairing gap dominates, whereas at strong coupling, the induced disorder dominates. These findings bring out the importance of improving the quality of the bulk superconductor itself (in addition to the quality of the nanowire and the interface) in the experimental search for solid-state Majorana fermions in proximity-coupled hybrid structures and, in particular, points out the pitfall of pursuing strong coupling between the semiconductor and the superconductor in a goal toward having a large proximity gap. In particular, our work establishes that the bulk superconductor in strongly coupled hybrid systems for Majorana studies must be in the ultraclean limit, since otherwise the bulk disorder is likely to completely suppress all induced topological superconductivity effects.



قيم البحث

اقرأ أيضاً

We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra nge of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).
One-dimensional systems proximity-coupled to a superconductor can be driven into a topological superconducting phase by an external magnetic field. Here, we investigate the effect of vortices created by the magnetic field in a type-II superconductor providing the proximity effect. We identify different ways in which the topological protection of Majorana modes can be compromised and discuss strategies to circumvent these detrimental effects. Our findings are also relevant to topological phases of proximitized quantum Hall edge states.
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topolo gical crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and thus to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak antilocalization and the weak links of the SQUID fully-gapped proximity induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2$pi$ periodicity, possibly dominated by the bulk conductivity.
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Flo quet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that both the Floquet Majorana zero and pi modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas, and find that the lifetime can be engineered by the external driving field.
Motivated by recent experiments searching for Majorana zero modes in tripartite semiconductor nanowires with epitaxial superconductor and ferromagnetic-insulator layers, we explore the emergence of topological superconductivity in such devices for pa radigmatic arrangements of the three constituents. Accounting for the competition between magnetism and superconductivity, we treat superconductivity self consistently and describe the electronic properties, including the superconducting and ferromagnetic proximity effects, within a direct wave-function approach. We conclude that the most viable mechanism for topological superconductivity relies on a superconductor-semiconductor-ferromagnet arrangement of the constituents, in which spin splitting and superconductivity are independently induced in the semiconductor by proximity and superconductivity is only weakly affected by the ferromagnetic insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا