ﻻ يوجد ملخص باللغة العربية
Quantum gates in topological quantum computation are performed by braiding non-Abelian anyons. These braiding processes can presumably be performed with very low error rates. However, to make a topological quantum computation architecture truly scalable, even rare errors need to be corrected. Error correction for non-Abelian anyons is complicated by the fact that it needs to be performed on a continuous basis and further errors may occur while we are correcting existing ones. Here, we provide the first study of this problem and prove its feasibility, establishing non-Abelian anyons as a viable platform for scalable quantum computation. We thereby focus on Ising anyons as the most prominent example of non-Abelian anyons and show that for these a finite error rate can indeed be corrected continuously. There is a threshold error rate $p_c>0$ such that for all error rates $p<p_c$ the probability of a logical error per time-step can be made exponentially small in the distance of a logical qubit.
We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C
We study the conditions under which a subsystem code is correctable in the presence of noise that results from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of Hamiltonian dynamics of the system and the e
We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important