ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable excitonic insulator in quantum limit graphite

137   0   0.0 ( 0 )
 نشر من قبل Neil Harrison
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Half a century ago, Mott noted that tuning the carrier density of a semimetal towards zero produces an insulating state in which electrons and holes form bound pairs. It was later argued that such pairing persists even if a semiconducting gap opens in the underlying band structure, giving rise to what has become known as the strong coupling limit of an `excitonic insulator. While these `weak and `strong coupling extremes were subsequently proposed to be manifestations of the same excitonic state of electronic matter, the predicted continuity of such a phase across a band gap opening has not been realized experimentally in any material. Here we show the quantum limit of graphite, by way of temperature and angle-resolved magnetoresistance measurements, to host such an excitonic insulator phase that evolves continuously between the weak and strong coupling limits. We find that the maximum transition temperature T_EI of the excitonic phase is coincident with a band gap opening in the underlying electronic structure at B_0= 46 +/- 1 T, which is evidenced above T_EI by a thermally broadened inflection point in the magnetoresistance. The overall asymmetry of the observed phase boundary around B_0 closely matches theoretical predictions of a magnetic field-tuned excitonic insulator phase in which the opening of a band gap marks a crossover from predominantly momentum-space pairing to real-space pairing.



قيم البحث

اقرأ أيضاً

Excitonic insulators (EI) arise from the formation of bound electron-hole pairs (excitons) in semiconductors and provide a solid-state platform for quantum many-boson physics. Strong exciton-exciton repulsion is expected to stabilize condensed superf luid and crystalline phases by suppressing both density and phase fluctuations. Although spectroscopic signatures of EIs have been reported, conclusive evidence for strongly correlated EI states has remained elusive. Here, we demonstrate a strongly correlated spatially indirect two-dimensional (2D) EI ground state formed in transition metal dichalcogenide (TMD) semiconductor double layers. An equilibrium interlayer exciton fluid is formed when the bias voltage applied between the two electrically isolated TMD layers, is tuned to a range that populates bound electron-hole pairs, but not free electrons or holes. Capacitance measurements show that the fluid is exciton-compressible but charge-incompressible - direct thermodynamic evidence of the EI. The fluid is also strongly correlated with a dimensionless exciton coupling constant exceeding 10. We further construct an exciton phase diagram that reveals both the Mott transition and interaction-stabilized quasi-condensation. Our experiment paves the path for realizing the exotic quantum phases of excitons, as well as multi-terminal exciton circuitry for applications.
The in-plane resistivity, Hall resistivity and magnetization of graphite were investigated in pulsed magnetic fields applied along the textit{c}-axis. The Hall resistivity approaches zero at around 53 T where the in-plane and out-of-plane resistiviti es steeply decrease. The differential magnetization also shows an anomaly at around this field with a similar amplitude compared to that of de Haas-van Alphen oscillations at lower fields. This transition field appears insensitive to disorder, but reduces with doping holes. These results suggest the realization of the quantum limit states above 53 T. As a plausible explanation for the observed gapped out-of-plane conduction above 53 T, the emergence of the excitonic BCS-like state in graphite is proposed.
84 - Shan Dong , Yuanchang Li 2021
Motivated by the recent synthesis of two-dimensional monolayer AlSb, we theoretically investigate its ground state and electronic properties using the first-principles calculations coupled with Bethe-Salpeter equation. An excitonic instability is rev ealed as a result of larger exciton binding energy than the corresponding one-electron energy gap by $sim$0.1 eV, which is an indicative of a many-body ground state accompanied by spontaneous exciton generation. Including the spin-orbit coupling is proven to be a must to correctly predict the ground state. At room temperature, the two-dimensional monolayer AlSb is a direct gap semiconductor with phonon-limited electron and hole mobilities both around 1700 cm$^2$/V$cdot$s. These results show that monolayer AlSb may provide a promising platform for realization of the excitonic insulator and for applications in the next-generation electronic devices.
We introduce the topological mirror excitonic insulator as a new type of interacting topological crystalline phase in one dimension. Its mirror-symmetry-protected topological properties are driven by exciton physics, and it manifests in the quantized bulk polarization and half-charge modes on the boundary. And the bosonization analysis is performed to demonstrate its robustness against strong correlation effects in one dimension. Besides, we also show that Rashba nanowires and Dirac semimetal nanowires could provide ideal experimental platforms to realize this new topological mirror excitonic insulating state. Its experimental consequences, such as quantized tunneling conductance in the tunneling measurement, are also discussed.
A novel topological insulator with tunable edge states, called quantum spin-quantum anomalous Hall (QSQAH) insulator, is predicted in a heterostructure of a hydrogenated Sb (SbH) monolayer on a LaFeO3 substrate by using ab initio methods. The substra te induces a drastic staggered exchange field in the SbH film, which plays an important role to generate the QSQAH effect. A topologically nontrivial band gap (up to 35 meV) is opened by Rashba spin-orbit coupling, which can be enlarged by strain and electric field. To understand the underlying physical mechanism of the QSQAH effect, a tight-binding model based on px and py orbitals is constructed. With the model, the exotic behaviors of the edge states in the heterostructure are investigated. Dissipationless chiral charge edge states related to one valley are found to emerge along the both sides of the sample, while low-dissipation spin edge states related to the other valley flow only along one side of the sample. These edge states can be tuned flexibly by polarization-sensitive photoluminescence controls and/or chemical edge modifications. Such flexible manipulations of the charge, spin, and valley degrees of freedom provide a promising route towards applications in electronics, spintronics, and valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا