ﻻ يوجد ملخص باللغة العربية
We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.
We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be di
We report enhanced broadband Terahertz (THz) generation and detailed characterization from the interaction of femtosecond two colour laser pulses with thin transparent dielectric tape target in ambient air. The proposed source is easy to implement, e
We present a comprehensive theoretical description for an irradiation of an ultrashort light pulse normally on thin materials based on first-principles time-dependent density functional theory. As the most elaborate scheme, we develop a microscopic d
Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this paper, we demonstrate this particular aspect by using an all-optical point-like source of continuous spin waves based on frequ
Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the